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Scheme S1 The growth mechanism of GBFs. Outward flange bubble as an exmaple. 

reacted molecular precursors were spatially separated in the hexane/toluene (reducing 

agent) and aqueous phases (AuCl4
-
). Upon ultrasound irradiation, due to the cavitation 

and nebulization between ultrasound and solvent media, the redox reaction was 

mostly occurred along the liquid/liquid/gas triphase interface with extremely high 

temperature and pressure. 

 

 

Figure S1. Side View TEM images of individual GBFs. 
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Figure S2. Top View TEM images of individual GBFs. 

 

 

 

 

 

 

 

Figure S3. Low magnification TEM (a) and SEM (B) images of GBFs. 
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Figure S4. Size distributions of GBFs and PEGylated GBFs measured by dynamic 

light scattering (DLS). 

 

 

 

 

Figure S5. Time-dependent LSPR peak changes of GBFs. 
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Figure S6. (a) UV-vis-NIR absorbance spectra of GBFs at 5, 60, and 90 min, and (b-d) 

the corresponding TEM images.  

 

 

Figure S7. (a) Plot of temperature change ( ∆T ) of aqueous solution of GBFs with 

the same laser power density of 1 W/cm
2
 and different optical densities (ODs) at 808 

nm; (b) Plot of temperature change ( ∆T ) of aqueous solution of GBFs with OD@808 

nm equals to 0.5 irradiated by different laser power densities. 
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Figure S8. Plot of temperature change (∆T) of GBFs solution (OD@808 nm = 0.5) 

irradiated by an 808 nm laser (0.5 W/cm
2
) for five on/off cycles (on: 3 min, off: 5 

min). 

 

 

Figure S9. (a) Photothermal effect of the irradiation of the aqueous dispersion of 

BGVs (OD@808 nm = 0.5) with the NIR laser (808 nm, 1 W/cm
2
), in which the 

irradiation lasted for 5 min, and then the laser was turned off. (b) Time constant for 

heat transfer from the system is determined to be τs = 94.28 s by applying the linear 

time data from the cooling period (after 300 s) versus negative natural logarithm of 

driving force temperature, which is obtained from the cooling stage of panel a. 
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Figure S10. In vivo photoacoustic (PA) images of tumor tissue after intratumoral 

injection. 

 

 

Figure S11. Typical time dependent variation photographs of 4T1 tumor-bearing 

mice with GBFs (400 µg/mL, 50 µL) injection after exposed to the 808 nm laser at 

power density of 0.5 W/cm
2
 for 5 min. 
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Figure S12. Mice body weight changes of tumor-bearing mice after various 

treatments indicated. The body weight of mice did not show significant change over 2 

weeks, indicating the excellent biocompatibility of GBFs in vivo. 

 

 

Figure S13. H&E stained images (40 x) of tumor section collected from GBFs/laser 

group of mice at day1. 
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Figure S14. H&E stained images of major organs collected from different groups of 

mice.  
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Table S1 Photothermal conversion efficiency of GBFs comparing with various 

nanomaterials. 

 

 

 

 


