Isomorphic emissive GTP surrogate facilitates initiation and elongation of in vitro transcription reactions

Lisa S. McCoy, Dongwon Shin, Yitzhak Tor*

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States

Table of Contents

Figure S.1: ESI-MS deconvoluted mass spectra of RNA transcripts 4, 5, S, th G-S, E. th G-E	S2
Figure S.2: ESI-MS mass over charge (m/z) and deconvoluted spectra of th G-E	S3
Figure S.3: Digestions of RNA transcripts 4, 5, S, th G-S, E. th G-E	S4
Figure S.4: Large scale transcription reactions using templates 6 and 7	S5
Figure S.5: Light and darker contrast images of higher temperature HH ribozyme cleavage reactions .	S6
Figure S.6: Absorption and emission spectra of single strands th G-S and th G-E	S6
Figure S.7: Comparison of normalized fluorescence and radioactive ribozyme cleavage data for th G-S	
and E	S7
Figure S.8: PAGE analysis confirming two fluorescent products th G-P ₁ and th G-P ₂	S7
Figure S.9: Large scale transcription reaction of riboswitch pbuE	S8
Figure S10: Digestion of RNA transcripts pbuE and th G-pbuE	S9

Figure S1: ESI-MS deconvolution mass results of a) transcripts **4** and **5**, b) S and th G-S and c) E and th G-E.

Figure S2: ESI-MS showing (a) mass over charge (m/z), b) deconvoluted and c) zoomed deconvoluted spectra.

Figure S3: a) The mixture of nucleosides used as a standard. This is shown in both panels to compare to the natural and modified transcripts. Digestion results of b) transcript **4** and **5**, c) S and thG-S, and d) E and thG-E. Digestion of 0.5-2 nmol of transcript was carried out using S1 nuclease for two hours at 37 °C, and was followed by dephosphorylation with alkaline phosphatase for two hours at 37°C. The ribonucleoside mixture obtained was analyzed by reverse-phase analytical HPLC, using a mobile phase of 0–6% acetonitrile (0.1% formic acid) in water (0.1% formic acid) over 12 min; flow rate 1 mL/min. Detection wavelengths are listed.

Figure S4: Gel of large scale transcription reactions using templates **6** and **7** with all natural NTPs (lane 1 and 3) or ATP, UTP, CTP and thGTP (lane 2 and 4) with UV light at a) 254 nm (on TLC plate) and b) 302 nm (PL). The reaction was resolved by gel electrophoresis on a denaturing 15% polyacrylamide gel. The isolated yields for thG-S compared to S was 61±3% (or 53±13%), with an average thGTP incorporation of 91±1% (or 88±2%). The isolated yields for thG-E compared to E was 28±2%, with an average of each of the thirteen thGTP incorporations was 91±1%.

Figure S5: a) Light and b) darker contrast images of HH ribozyme cleavage reactions results were followed by ³²P radioactive labeling of substrate strands S and thG-S. S and P₁, and thG-S and thG-P₁ indicate substrate and product strands. All reactions were conducted at 37 °C and contained 0.3 μ M substrate (including a trace of 5'-³²P labeled material), 3 μ M enzyme, 50 mM Tris pH 7.0, 200 mM NaCl, and 10 mM MgCl₂. Cleavage for S and thG-S by thG-E was estimated at around 2% at 40 min.

Figure S6: Absorption (dotted) and emission (solid) spectra of 0.6 μ M of thG-S (blue) and thG-E () in 50 mM Tris pH 7.0 and 200 mM NaCl. The excitation wavelength was 470 nm and emission was recorded from 390–650 nm. Slit widths for excitation and emission were 8 nm.

Figure S7: Comparison of fluorescence and radioactive experiment data for thG-S and E, including a) normalized fraction cleavage detected by radioactive experiments or normalized intensity at 450 nm for the fluorescence experiments and b) rates.

Figure S8: Lane 1 is thG-S, lane 2 is the cleavage reaction of thG-S & E after 20 minutes, and lane 3 is E. The reaction was conducted at 31 °C in a micro fluorescence cell (125 μ L) and contained 0.3 μ M thG-S, 3 μ M E, 50 mM Tris pH 7.0, 200 mM NaCl, and 10 mM MgCl₂. The reaction was resolved by gel electrophoresis on a denaturing 20% polyacrylamide gel and imaged with a) UV light at 254 nm (on TLC plate), b) 302 nm (PL), and c) in a BioRad gel imaging system with 302 nm (PL).

a) T7 promoter 5'-TAA TAC GAC TCA CTA TAG-3' Template pbuE 3'-ATT ATG CTG AGT GAT ATC CTT ATT AAC ATA TTG GAG TTA TTA TAC CAA ACT CCC ACA GAT GGT CCT TGG CAT TTT AGG ACT AAT GTT-5'

> T7 RNA Polymerase ATP, CTP, UTP , GTP or thGTP

Transcripts

 pbuE
 5'-pppG GAA UAA UUG UAU AAC CUC AAU AAU

 AUG GUU UGA GGG UGU CUA CCA GGA ACC GUA AAA UCC UGA UUA CAA-3'

 "G-pbuE
 5'-pppG GAA UAA UUG UAU AAC CUC AAU AAU

 AUG GUU UGA GGG UGU CUA CCA GGA ACC GUA AAA UCC UGA UUA CAA-3'

Figure S9: a) T7 promoter and template pbuE depicting the enzymatic incorporation reaction using natural NTPs and GTP or thGTP resulting in transcripts pbuE or thG-pbuE. thG is underlined and bolded blue in transcript thG-pbuE. b) Large scale transcription reaction using template pbuE with all natural NTPs (lane 1 and 1') or ATP, UTP, CTP and thGTP (lanes 2 and 2') with UV light at 254 nm (on TLC plate) and 302 nm (PL). The reaction was resolved by gel electrophoresis on a denaturing 8% polyacrylamide gel. The isolated yields for thG-pbuE compared to pbuE was 54%, with an average of each of the fourteen thGTP incorporations was 95%.

Figure S10: a) The mixture of nucleosides used as a standard. This is shown in both panels to compare to the natural and modified transcripts. b) Digestion results of transcript pbuE and thG-pbuE. Digestion of 0.3 nmol of transcript was carried out using S1 nuclease for two hours at 37 °C, and was followed by dephosphorylation with alkaline phosphatase for two hours at 37°C. The ribonucleoside mixture obtained was analyzed by reverse-phase analytical HPLC, using a mobile phase of 0-5% acetonitrile (0.1% formic acid) over 10 min; flow rate 1 mL/min. Detection wavelengths are listed.