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Figure S1. MC morphology. Reconstructed morphologies of 30 MCs recorded for analysis of intrinsic MC
biophysical properties. The MCL is bracketed by light grey contours and the division between the GL and
EPL is shown by a dark grey contour. Scaling is equivalent for Figs. S1 and S2.
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Figure S2. TC morphology. Reconstructed morphologies of 21 TCs recorded for analysis of intrinsic TC
biophysical properties. The MCL is bracketed by light grey contours and the division between the GL and
EPL is shown by a dark grey contour. Scaling is equivalent for Figs. S1 and S2.
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Figure S3. MC and TC intrin-
sic biophysical properties are
largely independent of mor-
phological properties. Linear
regression analysis was per-
formed between physiological
and morphological properties for
MCs (n=30) and TCs (n=21).
Significant relationships (with
Bonferroni correction for multi-
ple comparisons) are plotted as
black (MCs) and grey (TCs)
lines. MC Riypy significantly de-
creases with increasing apical,
but not lateral, dendrite volume
(p=4.0x10"*; R*=0.37). In con-
trast, MC C,, significantly in-
creases with increasing soma
area (p=3.5x107; R*=0.46) and
lateral dendrite volume (1.2x10°
% R?=0.41). No significant rela-
tionships were observed between
TC physiological and morpho-
logical properties.
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Figure S4. The diversity of afferent-evoked firing modes is predicted by somatic step current injections.
A-C: Representative MOB principal neuron (A) exhibiting a regular firing response to both afferent stimula-
tion (B) and somatic step current injection (C). Raster plots in B show the firing response across multiple
successive trials of 2 Hz afferent stimulation (first row shows the example spiking response plotted at top).
D-F: Same as A-C, but for a MOB principal neuron exhibiting a stuttering firing response. G: CVigy of the
firing response to afferent stimulation vs. the CVg; of the firing response to somatic step current injection
(evoking a ~20 Hz firing rate) for 5 MCs (black crosses) and 6 TCs (grey diamonds). Thick-lined symbols
correspond to the regular and stuttering neurons shown in 4 and D, respectively. Solid grey diamond plots
the firing response of a stuttering TC with long action potential clusters observed during somatic step current
injections. These long action potential clusters generated regular patterns of action potentials within the rela-
tively shorter afferent stimulation cycles, thus yielding a high somatic step current-evoked CVig; and a low
afferent evoked CVig. Including this outlier, the CVig; evoked by somatic step current injection significantly
predicted the CVis evoked by afferent input (solid line; linear regression: p=0.03; R*=0.44). Omission of the
outlier revealed a more robust relationship (dashed line; linear regression: p=3.5x10"*; R*=0.81).
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Figure SS. Biophysical diversity within MCs and TCs is largely independent of age. Linear regression
analysis was performed between animal age and Rinpy, Cm, Tm, sag amplitude, Tawup sov, rheobase, first spike
latency at rheobase, CVisy, ~20 1z, and FI curve gain for MCs and TCs. Significant relationships (with Bonfer-
roni correction for multiple comparisons) are plotted as black (MCs) and grey (TCs) lines. Age values have
been jittered by ~0.1 d in the plot of rheobase vs. age to help visualize overlapping data points. MC firing
regularity significantly decreases with animal age (p=1.2x10"; R*=0.44). Variance in other MC and TC bio-
physical properties could not be explained by age differences.
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Figure S6. Depth analysis of TCs. 4: Distribution of somatic depths from the GL-EPL border of recon-
structed TCs (see Fig. S2 for full reconstructions). B-F: Linear regression of somatic depth against rheobase
(B; p=0.09), first spike latency at rheobase (C; p=0.24), FI curve gain (D; p=0.84), peak instantaneous firing
rate (E; p=0.56), CVis; measured at ~20 Hz (F; p=0.12).



