Supporting Information for:

Correlation of phenotypic profiles using targeted proteomics identifies

mycobacterial Esx-1 substrates

Matthew M. Champion, Emily A. Williams, Richard S. Pinapati, and Patricia A. DiGiuseppe Champion

Contents:

Table S1: Strains used in this study

 Table S2: p values for relative differences between protein levels in the WT vs ESX-1-deficient

strains

Table S3: espK and espJ paralogs in *M. marinum* are found in pairs

Figure S1: MRM Transitions monitored in this study

Figure S2: Western blot analysis for the production and secretion of EsxA and EsxB

Figure S3: Pearson correlation coefficients and significance for all proteins in this study

Figure S4: Log2 transformed normalized area ratios for protein levels in the culture filtrates.

Figure S5: A model of Esx-1 export in *M. marinum*

Figure S6: R code used for calculating the significance of correlation

Name	Genotype	Reference
M strain	Wild-type <i>M. marinum,</i> parent	Gao, LY et al. 2003
	strain	
∆RD1	∆eccCb'-espK	Volkman, HE et al. 2004
M1	espG ₁ ::Tn	Gao, LY et al. 2004
M2	espH::Tn	Gao, LY et al. 2004
M3	eccA ₁ ::Tn	Gao, LY et al. 2004
M4	eccA ₁ ::Tn	Gao, LY et al. 2004
6B10	eccB ₁ ::Tn	Champion, MM et al. 2012
F11	eccB ₁ ::Tn	This study
Mh3871::Tn	eccCb::Tn	Joshi, SA et al. 2012
Mh∆ <i>esxBA</i>	∆esxBA	Gao, LY et al. 2004
Mh∆esxA	∆esxA	Xu, J et al. 2007
M5	espl::Tn	Gao, LY et al. 2004
17	eccD ₁ ::Tn	This study
M6	espJ::Tn	Gao, LY et al. 2004
M7	espK::Tn	Gao, LY et al. 2004
2	espL::Tn	This study
M8	espB::Tn	Gao, LY et al. 2004

Table S1: *M. marinum* strains used in this study

Table S2: p values for relative differences between protein levels in the WT vs ESX-**1-deficient strains.** "-" indicates a p value of <.0001. p values were determined by a two tailed Student's t-test.

		ESX-1 deficient <i>M. marinum</i> strains														
Protein	Fraction	∆RD1	espG1	eccA-1	eccA-2	eccB-1	eccB-2	eccCb	∆esxBA	ΔesxA	espl	eccD1	espJ	espK	espL	espB
FeyB	CL	-	.0234	-	.0028	-	.0012	.8025	-	-	.0443	.0014	.1334	.4673	.0074	.0008
LOXD	CF	-	-	-	-	-	-	-	-	-	-	-	.0007	-	-	-
EsxA	CL	-	.0352	.0034	.0241	.0043	.0152	.0056	-	-	.0777	.9782	.5244	.3558	.0145	.0269
	CF	.0002	-	-	.0003	-	-	-	.0003	.0003	.0012	.0012	.0277	.0065	-	.0004
EcnE	CL	-	-	-	-	-	-	.0004	-	-	-	-	.0093	0.0052	-	-
сэрг	CF	-	-	-	-	-	-	.0006	-	-	.0019	.0003	.0024	-	-	-
E a m D	CL	.0022	.0203	.0059	.0165	.0002	.0755	.4230	.1246	.6357	.0013	.2696	.0097	.5332	.1054	.0002
сэрь	CF	-	-	-	.0016	-	-	-	-	-	.0028	.0021	.0114	.0007	-	-
Fank	CL	-	.6519	-	-	-	-	.0001	.0001	-	-	.0005	.0003	-	-	.0003
сэрк	CF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PPE68	CL	-	.0002	.0008	-	.0014	.0019	.0003	.0001	.0025	.0019	.0059	.3745	.0229	-	.0024
FFE00	CF	-	.0010	.0100	.0219	-	-	-	-	-	.0002	.0393	.0123	.7889	-	.0012
Fenl	CL	-	.0009	-	-	-	.0017	.0114	.0023	.0002	.0003	.0030	-	-	-	-
Labo	CF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EevN	CL	.8178	1.000	.0002	.2012	.0046	.8309	.0224	.0054	.0051	.2073	.0384	.9768	.5303	.0960	.1597
ESXIN	CF	.0077	.0072	.0010	.0067	.0040	.0027	.8151	.0267	.0085	.0047	.2239	.2526	.0062	.0024	.0130
2020	CL	.0146	.0071	-	.3893	.0002	.0002	.0247	.0027	.0073	.0003	.0264	.0034	.7280	.0005	.0275
2929	CF	.0172	.2064	.0284	.5141	.6989	.0039	-	.0394	.0171	.0064	-	.0059	.0148	.0003	.0106

	Compa	rison with E	spJ _{MM} or	Post PLAST bit	Comparison with EspJ _{MT} or				
<i>M. marinum</i> genes		EspK _{MM}		best blast fill blast fill blast b	EspK _{MT}				
	%	%	%		%	%	%		
	identity	similarity	coverage	genome	identity	similarity	coverage		
MMAR_5453 (espJ)	100	100	100	rv3878 (espJ)	33	43	100		
MMAR_5455 (espK)	100	100	100	rv3879c (espK)	50	58	99		
MMAR_4352	29	38	90	rv3878 (espJ)	41	52	98		
MMAR_4351	43	52	100	rv3879c(espK)	46	56	99		
MMAR_0197	36	52	33	rv3878(espJ)	41	53	80		
MMAR_0199	33	43	99	rv3879c(espK)	33	45	99		
MMAR_0200	38	47	38	rv3879c(espK)	29	44	86		
MMAR_1328	31	42	69	rv3878(espJ)	51	62	50		
MMAR_1331	35	43	99	rv3879c(espK)	30	40	98		
MMAR_5425 "orphan espK"	48	62	29	rv3879c(espK)	61	72	75		

Table S3. *espK* and *espJ* paralogs in *M. marinum* are found in pairs. *M. marinum* contains several paralogs of both *espJ* and *espK*. All of the *espJ* paralogs are found paired with an *espK* paralog. One *espK* paralog (*MMAR_5425*) does not have an *espJ* partner nearby. *M. marinum espJ* (*MMAR_5453*) and *espK* (*MMAR_5455*) are found at the *esx-1* locus. *MMAR_0197*, *MMAR_0199*, *MMAR_0200* are found at a partial duplication of the *esx-1* locus in *M. marinum*. *MMAR_4352* /*MMAR_4351* and *MMAR_1328*/*MMAR_1331* are not linked to a known *esx* locus. *M. marinum* paralogs were identified by using DELTA-BLAST to search the *M. marinum* genome with either *MMAR_5453* or *MMAR_5455*. The TB ortholog was identified as the top hit in a DELTA-BLAST search against the *M. tuberculosis* H37Rv genome. PE/PPE proteins are found at the esx-1 locus (MMAR_5447, MMAR_5448), near the *espK/J* paralog pair at MMAT_4346, and at the partial Esx duplication (MMAR_0183, pe35, ppe68_1 (substrate) and ppe51_2).

Figure S1: MRM transitions monitored in this study

Transition Name/ID	Q1 (m/z)	Q3 (m/z)	Dwell (ms)	CE (V)	Transition Name/ID	Q1 (m/z)	Q3 (m/z)	Dwell (ms)	CE (V)
*CFP10_GAAGTAAQAAVVR.T1	571.8	943.5	12	33.6	EspA_VSSEPVGEHAQAASAQGGQGMGGMHPASAGSK.T1	745.3	999.5	12	42.3
CFP10_GAAGTAAQAAVVR.T2	571.8	785.5	12	33.6	EspA_VSSEPVGEHAQAASAQGGQGMGGMHPASAGSK.T2	745.3	929.4	12	42.3
CFP10 GAAGTAAQAAVVR.T3	571.8	714.4	12	33.6	EspA VSSEPVGEHAQAASAQGGQGMGGMHPASAGSK.T3	745.3	858.4	12	42.3
CEP10_TOIDOVESTAGSLOAOWR T1	673 3	945 5	12	38.7	Espl_IDDGI1KEVGPEVVSAR T1	599.7	913 5	12	35
	673.3	C00.4	12	20.7		500.7	014.4	12	35
CFP10_TQIDQVESTAGSLQAQWR.12	6/3.3	688.4	12	38.7	ESPL_IDDGLLKEVGPEVVSAR.12	599.7	814.4	12	35
CFP10_TQIDQVESTAGSLQAQWR.T3	673.3	888.5	12	38.7	EspL_IDDGLLKEVGPEVVSAR.T3	599.7	757.4	12	35
CFP10_ADDEQQQALSSQMGF.T1	827.9	999.4	12	46.4	EspL_FQSALDGTLNQMNTGNFR.T1	672	967.4	12	38.6
CFP10_ADDEQQQALSSQMGF.T2	827.9	886.4	12	46.4	EspL FQSALDGTLNQMNTGNFR.T2	672	839.4	12	38.6
CEP10 ADDEOOOALSSOMGE.T3	827.9	840.4	12	46.4	Espl. EOSALDGTLNOMNTGNER T3	672	708 3	12	38.6
	465.0	600.0	12	29.2		C10 C	075.4	12	25.0
# ESATB_LAAAWGGSGSEATR.11	405.9	082.3	12	28.5		018.0	975.4	12	35.9
ESAT6_LAAAWGGSGSEAYR.T2	465.9	538.3	12	28.3	EspL_GKDDTETVEVTINGHQWLTAVR.T2	618.6	747.3	12	35.9
ESAT6_LAAAWGGSGSEAYR.T3	465.9	883.4	12	28.3	EspL_GKDDTETVEVTINGHQWLTAVR.T3	618.6	699.4	12	35.9
ESAT6_GVQQNWDSTAQELNNSLQNLAR.T1	829.4	915.5	12	46.5	EspL_MEMDPQVAQVLALAAR.T1	581.6	912.6	12	34.1
ESAT6 GVQQNWDSTAQELNNSLQNLAR.T2	829.4	801.5	12	46.5	Espl MEMDPQVAQVLALAAR.T2	581.6	841.5	12	34.1
	820 /	714 4	12	46.5		581.6	614.4	12	34.1
ESATO_GVQQNWDSTAQELINISLQNLAR.TS	425.2	714.4	12	40.3		015	014.4	12	34.1
5455_ESPK_GIPRPTGEYAGR.T1	425.2	552.3	13	26.3	CAP_AGIFQGVEPGAVAALIK.11	815	827.5	12	45.7
5455_EspK_GIPRPTGEYAGR.T2	425.2	850.4	13	26.3	CAP_AGIFQGVEPGAVAALTK.T2	815	956.5	12	45.7
5455_EspK_GIPRPTGEYAGR.T3	425.2	466.2	13	26.3	CAP_AGIFQGVEPGAVAALTK.T3	815	1112.6	12	45.7
5455 EspK VLHLFTDVMDAcR.T1	526.3	652.3	13	31.3	CAP AWIADRPEIAEQLLR.T1	594.3	762.4	12	34.7
	526.3	826.4	12	21.2		50/ 3	705.0	12	34.7
	520.5	020.4	13	21.2		504.3	(70).5	12	34.7
5455_ESPK_VLHEFTDVIVIDACK.15	520.5	925.5	15	51.5	CAP_AWIADRPEIAEQLLR.13	594.3	670.4	12	34.7
5455_EspK_KAAIASLIR.T1	471.8	814.5	13	28.6	CAP_TSSATTITEVR.T1	583.3	977.5	12	34.2
5455_EspK_KAAIASLIR.T2	471.8	743.5	13	28.6	CAP_TSSATTITEVR.T2	583.3	819.5	12	34.2
5455 EspK KAAIASLIR.T3	471.8	672.4	13	28.6	CAP TSSATTITEVR.T3	583.3	718.4	12	34.2
ESpB ADLEPVNPPKPPAAIK.T1	553	614.9	13	32.6	EspG AAAGVLDSAHGR.T1	562.8	755.4	12	33.1
	552	018.6	12	32.6		E62.0	002 5	12	22.1
	555	705.0	15	32.0		502.0	502.5	12	33.1
ESPB_ADLEPVNPPKPPAAIK.13	553	/35.9	13	32.6	ESPG_AAAGVLDSAHGK.13	562.8	642.3	12	33.1
EspB_GHPTLADIVELER.T1	483.9	805.4	13	29.2	EspG_YGLTPTTAR.T1	490.3	816.5	12	29.5
EspB_GHPTLADIVELER.T2	483.9	692.3	13	29.2	EspG_YGLTPTTAR.T2	490.3	646.4	12	29.5
ESDB GHPTLADIVELER.T3	483.9	645.4	13	29.2	EspG YGLTPTTAR T3	490 3	545 3	12	29.5
	662.2	054.4	10	29.2		F00.3	001 5	12	23.5
	002.3	954.4	15	36.1		569.5	901.5	12	34.5
ESPB_VAAAGESDFTDLK.12	662.3	825.4	13	38.1	ESPG_LYTEIVTNPK.12	589.3	6/1.4	12	34.5
EspB_VAAAGESDFTDLK.T3	662.3	738.4	13	38.1	EspG_LYTEIVTNPK.T3	589.3	800.5	12	34.5
EspF_Ac-TGLLNVVPSFLK.T1	665.4	903.5	12	36	EsxN AASLEAEHQAIVR.T1	697.9	923.5	12	39.9
EspF Ac-TGLLNVVPSFLK.T2	665.4	1016.6	12	36	EsxN_AASLEAEHQAIVR.T2	697.9	852.5	12	39.9
	665.4	600 /	12	36		607.0	1052.5	12	30.0
	505.4 F0F.2	017.5	12	24.9		521.0	022.5	12	33.5
ESPF_NSAGIGLQGVIGK.II	595.3	917.5	12	34.8	ESXN_AQAASLEAEHQAIVR.11	531.9	923.5	12	31.6
EspF_NSAGTGLQGVTGK.T2	595.3	988.5	12	34.8	EsxN_AQAASLEAEHQAIVR.T2	531.9	697.9	12	31.6
EspF_NSAGTGLQGVTGK.T3	595.3	1075.6	12	34.8	EsxN_AQAASLEAEHQAIVR.T3	531.9	662.4	12	31.6
EspF SATNVVSGIGSR.T1	574.3	989.5	12	33.7	5443 LLAEAQEELDR.T1	643.8	989.5	12	37.2
ESPE_SATNVVSGIGSR.T2	574.3	888.5	12	33.7	5443 LLAFAOFFLDR.T2	643.8	1060.5	12	37.2
	574.3	1060.6	12	33.7		643.8	860.4	12	37.2
	574.5	1000.0	12	35.7	J445_LLAEAQEELDK.15	045.6	800.4	12	57.2
PPE68_GESLPGAGGTLTR.T1	608.3	829.5	12	35.4	5443_VVANMLAGLGVIAEPK.11	528	954.6	12	31.4
PPE68_GESLPGAGGTLTR.T2	608.3	732.4	12	35.4	5443_VVANMLAGLGVIAEPK.T2	528	713.4	12	31.4
PPE68_GESLPGAGGTLTR.T3	608.3	942.5	12	35.4	5443_VVANMLAGLGVIAEPK.T3	528	1067.6	12	31.4
PPE68 MLWHAMPPELNTAR.T1	556.3	770.3	12	32.8	5443 LLETNEGLR.T1	522.8	931.5	12	31.1
PPE68 MIWHAMPPEINTAR T2	556.3	897 5	12	32.8	5442 LI ETNIEGLE T2	522.8	818 A	12	31.1
	550.5	000.4	12	32.0		522.0	010.4	12	31.1
PPE68_WLWHAIMPPELNTAR.13	556.3	800.4	12	32.8	5443_LLETNEGLR.13	522.8	689.4	12	31.1
PPE68_LNSLGEAWTGGGSEK.T1	753.4	892.4	12	42.7	5443_DGRTDPFGQEAMDTLLAR.T1	665	974.4	12	38.2
PPE68_LNSLGEAWTGGGSEK.T2	753.4	821.4	12	42.7	5443_DGRTDPFGQEAMDTLLAR.T2	665	890.5	12	38.2
PPE68 LNSLGEAWTGGGSEK.T3	753.4	1191.6	12	42.7	5443 DGRTDPFGQEAMDTLLAR.T3	665	819.4	12	38.2
GroES_EKPOEGTVVAVGPGR.T1	508.6	869.4	12	30.4	5446 LGDVNETOIDB T1	630.3	974 5	12	36.5
	E09 6	EE6 2	12	20.4		620.2	07E A	12	26.5
	500.0	000.5	12	30.4		630.3	764.4	12	30.5
Groes_EKPQEGTVVAVGPGR.13	508.6	968.5	12	30.4	S446_LGDVNETQIDK.13	630.3	761.4	12	30.5
GROES_YGGEEYLILSAR.T1	685.8	964.5	12	39.3	5446_VVAEMQAVMR.T1	567.3	935.4	12	33.4
GROES_YGGEEYLILSAR.T2	685.8	835.5	12	39.3	5446_VVAEMQAVMR.T2	567.3	864.4	12	33.4
GroEL_AEIENSDSDYDR.T1	707.3	971.4	12	37	5446_VVAEMQAVMR.T3	567.3	735.4	12	33.4
GroEL AEIENSDSDYDR.T2	707.3	1100.4	12	37	5446 VGSIAMYR.T1	448.7	797.4	12	27.4
	855 /	1212.6	17	45	5446 VGSIAMYR T2	448 7	740 4	12	27 /
	QEE 4	11 /1 /	12			440 7	652.2	12	27.4
	000.4	1141.0	14	45		448./	053.3	12	27.4
Groel2_DETTIVEGAGDSDAIAGR.T1	888.9	1217.6	12	45	ESPR_GPHTSAEVIAALK.T1	431.9	779.4	12	26.6
GroEL2_DETTIVEGAGDSDAIAGR.T2	888.9	1118.5	12	45	EspR_GPHTSAEVIAALK.T2	431.9	680.3	12	26.6
EspJ_AEPLAVDPAR.T1	519.8	838.5	12	31	EspR_GPHTSAEVIAALK.T3	431.9	515.4	12	26.6
EspJ_AEPLAVDPAR.T2	519.8	741.4	12	31	EspR SQGLSTQAQQEIVER.T1	837.4	972.5	12	46.9
Espl AFPLAVDPAR.T3	519.8	628 3	12	31	EspR_SOGLSTOAOOFIVER.72	837.4	901 5	12	46.9
Ecol TASSMSTAADIYAK TI	472.0	620.3	12	28 -		827 /	772 /	12	16.0
	472.9	000.4	12	20.0		05/.4	//3.4	12	40.9
	472.9	609.3	12	28.6	CSPK_INPSTATIVIAALANFEK.11	5/1.6	909.5	12	33.6
EspJ_TASSMSTAADIYAK.T3	472.9	939.5	12	28.6	EspR_TNPSTATMAALANFFR.T2	571.6	838.5	12	33.6
EspE_APIDAGSNTGQGNEGTLL.T1	857.9	989.5	12	47.9	EspR_TNPSTATMAALANFFR.T3	571.6	654.3	12	33.6
EspE APIDAGSNTGQGNEGTLL.T2	857.9	1103.5	12	47.9	5444 ATNQLYVLLSGQLHPVYNLTSAR.T1	853.5	1193.6	12	47.7
EspE_APIDAGSNTGOGNFGTLL_T3	857 9	1190.6	12	47.9	5444 ATNOLYVLLSGOLHPVYNLTSAR T2	853.5	1016 1	12	47.7
	A12 2	604 4	12	77.5		853.5 852 F	1072 6	12	47.7
	412.2	054.4 F04.2	12	25.7		000.0	10/2.0	12	4/./
ESPE_MIDGVYK.12	413.2	581.3	12	25.7	ECCE_IADGLASNGVDAVCGR.T1	787.9	1183.6	12	44.4
EspE_MIDGVYK.T3	413.2	466.3	12	25.7	EccE_IADGLASNGVDAVCGR.T2	787.9	1105.5	12	44.4
EspH_AANMSESALAEEIFVIADLAR.T1	741	904.5	12	42.1	EccE_IADGLASNGVDAVCGR.T3	787.9	1034.5	12	44.4
EspH AANMSESALAEEIFVIADLAR.T2	741	946.4	12	42.1	EspE LLEDLLSVHCPDLEADVVSAGYR.T1	857.8	1173.1	12	47.9
ESDH AANMSESALAFFIEVIADIAR T3	741	757 5	12	42 1	FCCE LLEDUSVHCPDLEADVVSAGYR T3	857.8	937 9	12	47 9
Ecoli VEVDYTSR T1	516 7	960 4	12	20.9		440 7	604 2	12	77
	510.7	009.4	12	30.8		440.7	004.3	12	2/
ESPH_YEVDYISR.12	516.7	740.4	12	30.8	ECCE_YLVASATR.12	440.7	505.3	12	27
EspH_YEVDYTSR.T3	516.7	641.3	12	30.8	EccE_YLVASATR.T3	440.7	717.4	12	27
EspH_AAQHTFMVEAMASELSDETEEEGALLR.T1	989.1	1146.6	12	54.5					
EspH_AAQHTFMVEAMASELSDETEEEGALLR.T2	989.1	886.4	12	54.5	<u>CFP-10 is synonymous with Es</u>	<u>KR</u>			
ESDH AAOHTEMVEAMASELSDETEEEGALLR T3	989 1	916 5	12	54.5	# ESAT-6 is synonymous with Es	vΔ			

ESAT-6 is synonymous with EsxA

Figure S2: Western blot analysis for the production and secretion of EsxA and EsxB. A) Western blot analysis of cell lysates and **B)** culture filtrates generated from WT *M. marinum* M strain and the ESX-1-deficient strains bearing transposon insertions or deletions in the extended RD1 locus. MPT32 served as a loading control for the CFs. GroEL, a cytosolic protein, served as a loading control for the CLs and a lysis control for the CFs. Western blot images were quantified using Image J. **C)** Quantification of the blots in panel A **D)** Quantification of the blots in panel B. CL proteins were normalized to GroEL. CF proteins were normalized to MPT-32. All results were normalized to the wild-type levels to allow for comparison between gels.

A. Correlations between Esx-1-associated proteins in the CL

	Lapi														
EspF	1**	EspG1	_												
EspG1	0.8845**	1**	EspH												
EspH	0.8587**	0.7920**	1**	EccA1											
EccA1	0.8319**	0.9200**	0.7719**	1**	EccCb	_									
EccCb	0.7152**	0.8365**	0.7455**	0.8599**	1**	PPE68	_								
PPE68	0.9546**	0.9052**	0.8530**	0.8702**	0.8160**	1**	EsxB	_							
EsxB	0.519*	0.6680**	0.4528	0.6879**	0.4786	0.5528*	1**	EsxA	-						
EsxA	0.7449**	0.7966**	0.5708*	0.7910**	0.5751*	0.7460**	0.9294**	1**	EspJ						
EspJ	0.3759	0.5096*	0.3778	0.3678	0.3353	0.3951	0.1023	0.1593	1**	EspK	_				
EspK	0.479	0.4946	0.1921	0.5497*	0.4343	0.5472*	0.4253	0.5175*	0.4745	1**	EspL				
EspL	0.8143**	0.8475**	0.8961**	0.7891**	0.7207**	0.7962**	0.5213*	0.5861*	0.6106*	0.3697	1**	EspB	_		
EspB	0.8297**	0.7838**	0.8359**	0.8155**	0.6895**	0.7605**	0.4100	0.5460*	0.5156*	0.3759	0.8890**	1**	2929 ^s		
2929 ^s	0.6553 **	0.6195*	0.7626**	0.7196**	0.5618*	0.6610**	0.6039*	0.6066*	0.1368	0.3465	0.7363**	0.5927*	1**	EsxN ⁵	
EsxN⁵	0.334	0.2862	0.4433	0.2950	0.2052	0.283	-0.0752	-0.0403	0.7223**	0.3482	0.6182*	0.5642*	0.4424	1**	

B. Significance of correlations between Esx-1-associated proteins in the CL

	ESPF													
EspF	6.084x10 ⁻²¹⁷	EspG1	_											
EspG1	5.381x10 ⁻⁰⁶	4.789x10 ⁻²²⁴	EspH											
EspH	2.056x10 ⁻⁰⁵	0.0003	4.562x10 ⁻²³⁰	EccA										
EccA1	6.436x10 ⁻⁰⁵	4.534x10 ⁻⁰⁷	0.0005	9.202x10-222	EccCb									
EccCb	0.0018	5.376x10 ⁻⁰⁵	0.0009	1.946x10 ⁻⁰⁵	2.020x10 ⁻²²²	PPE68	-							
PPE68	9.480x10 ⁻⁰⁹	1.432x10 ⁻⁰⁶	2.673x10 ⁻⁰⁵	1.174x10 ⁻⁰⁵	0.0001	8.447x10 ⁻²²⁵	EsxB							
EsxB	0.0394	0.0047	0.0782	0.0032	0.0607	0.0264	6.076x10-221	EsxA	_					
EsxA	0.0009	0.0002	0.0209	0.0003	0.0198	0.0009	1.935x10 ⁻⁰⁷	1.207x10 ⁻²²¹	EspJ					
EspJ	0.1514	0.0438	0.1491	0.1610	0.2043	0.1299	0.7062	0.5558	2.603x10 ⁻²¹⁸	EspK				
EspK	0.0605	0.0515	0.4760	0.0274	0.0928	0.0283	0.1005	0.0401	0.0633	1.136x10 ⁻²²¹	EspL			
EspL	0.0001	3.398x10 ⁻⁰⁵	2.660x10 ⁻⁰⁶	0.0003	0.0016	0.0002	0.0384	0.0170	0.0120	0.1587	1.841x10 ⁻²²⁵	EspB		
EspB	7.010x10 ⁻⁰⁵	0.0003	5.495x10 ⁻⁰⁵	0.0001	0.0031	0.0006	0.1148	0.0287	0.0409	0.1514	4.129x10 ⁻⁰⁶	9.707x10-221	2929 ^s	_
2929 ^s	0.0059	0.0105	0.0006	0.0017	0.0235	0.0053	0.0132	0.0127	0.6134	0.1886	0.0011	0.0155	1.216x10-226	EsxN⁵
EsxN⁵	0.2061	0.2825	0.0855	0.2674	0.4458	0.2882	0.7819	0.8821	0.0016	0.1863	0.0107	0.0228	0.0862	8.656x10 ⁻²⁴³

C. Correlations between Esx-1-associated proteins in the CF

	EspF	_											
EspF	1**	EspG1											
EspG1	0.3230	1**	EspH										
EspH	0.4631	-0.1470	1**	EccA1									
EccA1	0.2750	0.9004**	-0.2560	1**	PPE68								
PPE68	0.5005*	0.025	0.4536	0.0261	1**	EsxB							
EsxB	0.9243**	0.2246	0.5424*	0.1786	0.6994**	1**	EsxA						
EsxA	0.9475**	0.286	0.4705	0.2273	0.6069*	0.9865**	1**	EspJ					
EspJ	0.8405**	0.2106	0.0561	0.1595	0.3830	0.7942**	0.8537**	1**	EspK				
EspK	0.7754**	0.1989	-0.0260	0.1606	0.3829	0.7547**	0.8129**	0.9854**	1**	EspL			
EspL	0.0263	0.7466**	-0.273	0.8889**	-0.052	-0.071	-0.055	-0.15	-0.158	1**	EspB		
EspB	0.9107**	0.1865	0.2728	0.1645	0.4578	0.9006**	0.9189**	0.9042**	0.8711**	-0.118	1**	2929 ^s	
2929 ^s	0.0112	0.5867*	-0.329	0.7319**	-0.083	-0.082	-0.069	-0.117	-0.101	0.8763**	-0.0810	1**	EsxN ⁵
EsxN⁵	0.465	0.6341**	-0.013	0.7870**	0.2266	0.4209	0.4286	0.2862	0.2771	0.7493**	0.3565	0.8138**	1**

D. Significance of correlations between Esx-1-associated proteins in the CF

	EspF												
EspF	1.007x10 ⁻²²⁴	EspG1											
EspG1	0.9267	6.841x10 ⁻²³¹	EspH	_									
EspH	0.0708	0.5866	1.314x10 ⁻²¹⁷	EccA1									
EccA1	0.3026	2.002x10 ⁻⁰⁶	0.3381	9.521x10 ⁻²³⁵	PPE68								
PPE68	0.0483	0.9267	0.0776	0.9236	2.553x10 ⁻²²²	EsxB							
EsxB	3.124x10 ⁻⁰⁷	0.4030	0.0299	0.5080	2.567x10 ⁻⁰³	2.348x10 ⁻²³³	EsxA						
EsxA	2.562x10 ⁻⁰⁸	0.2830	0.0659	0.3972	0.0127*	2.132x10 ⁻¹²	3.089x10 ⁻²¹⁷	EspJ					
EspJ	4.576x10 ⁻⁰⁵	0.4336	0.8364	0.5553	0.1432	0.0002	2.592x10 ⁻⁰⁵	2.065x10 ⁻²²³	EspK				
EspK	0.0004	0.4602	0.9247	0.5524	0.1432	0.0007	0.0001	3.704x10 ⁻¹²	3.235x10 ⁻²¹⁹	EspL			
EspL	0.9230	0.0009	0.3067	4.150x10 ⁻⁰⁶	0.8475	0.7925	0.8401	0.5788	0.5599	1.325x10 ⁻²³⁶	EspB		
EspB	9.558x10 ⁻⁰⁷	0.4891	0.3067	.5427	0.0746	1.974x10 ⁻⁰⁶	4.994x10 ⁻⁰⁷	1.534x10 ⁻⁰⁶	1.123x10 ⁻⁰⁵	0.6623	5.758x10 ⁻²²¹	2929 ^s	_
2929 ^s	0.9671	0.0169	0.2130	1.267E-03	0.7592	0.7613	0.7996	0.6670	0.7109	8.538x10 ⁻⁰⁶	0.7662	9.376x10 ⁻²¹⁹	EsxN ⁵
EsxN ⁵	0.0696	0.0083	0.9625	2.976E-04	0.3986	0.1045	0.0976	0.2826	0.2989	0.0008	0.1753	0.0001	7.819x10 ⁻²²⁸

Figure S3: Pearson correlation coefficients and the significance of correlation for all proteins in this study in the CL and CF. Correlation coefficients for Esx-1 associated proteins and controls in the cell lysates (A), and the significance of these correlations (B) are shown. Correlation coefficients for proteins in the culture filtrates (C) and the significance of these correlations (D) are shown. Pearson's correlation coefficients (r) were calculated using the area ratios of Esx-1-associated and control (EsxN and MMAR_2929) proteins. The p-values computed by fitting a linear model using R. Shaded grey indicates correlation coefficients that were considered significant; * $p \le 0.05$, ** $p \le 0.01.5$ and S superscripts refer to proteins secreted by the Esx-5 and Sec secretion systems, respectively.

M. marinum strains

Figure S4: Log 2 transformed normalized area ratios for protein levels in the culture filtrates.

The normalized area ratio data for secreted proteins in the culture filtrate presented in Figures 2 and 3 were log2 transformed in Microsoft Excel and plotted. Error bars represent the average propagated standard error and were calculated as described in the materials and methods section **A**) EsxA **B**) EsxB **C**) EspB **D**) EspF **E**)EspK **F**) EspJ **G**) PPE68 **H**) EsxN **I**) MMAR_2929.

Figure S5. A model of Esx-1 export in *M. marinum.* The Esx-1 exporter promotes the translocation of substrates across the cytoplasmic membrane (CM) of *M. marinum.* The mechanism of transport across the MOM (mycolate outer membrane) is not known, and is indicated with a question mark. The membrane complex includes EccCb, EccD and EccE. EccCa, EccCb and EccA are all AAA ATPase proteins. Substrates include EsxA, EsxB, EspF, EspC (in *M. tb*), EspE, and EspK, EspJ and PPE68, which were defined in this study. Our findings indicate that EspL, EccB, EccCb, EsxA and EsxB (Dark Blue) are required for the export of all *esx-1* encoded substrates (light blue). In the absence of EspB, EspG, EccA and EspI (medium blue) the levels of all Esx-1 proteins measured in this study were reduced. We propose that these proteins function as chaperones for *esx-1*. Proteins in white were not measured in this study. Potential interactions based on the correlation coefficients, which need further testing, are indicated by dotted lines (EspK and EspJ, EspF, PPE68).

Figure S6. The R code used to calculate the significance of correlation

Read in data, compute and save Pearson's correlation scores

data_pel <- read.csv("pellet_data.csv", sep=",", head=T, row.names=1)
cor_data_pel <- as.matrix(cor(data_pel, use="everything", method="pearson"))
write.table(cor_data_pel, "corr_pellet.csv", sep=",")</pre>

```
data_sup <- read.csv("supernatant_data.csv", sep=",", head=T, row.names=1)
cor_data_sup <- as.matrix(cor(data_sup, use="everything", method="pearson"))
write.table(cor data sup, "corr supernatant.csv", sep=",")</pre>
```

Function to extract p-values from fitting linear models

```
lmp <- function (modelobject) {
    if (class(modelobject) != "lm") stop("Not an object of class 'lm' ")
    f <- summary(modelobject)$fstatistic
    p <- pf(f[1],f[2],f[3],lower.tail=F)
    attributes(p) <- NULL
    return(p)
}</pre>
```

Fitting linear models and output a matrix of p-values a = 1

```
b = 1
pvalsout pel = NULL
for (a in 1:length(data pel[1,])){
      for (b in 1:length(data pel[1,])) {
           pvals = lmp(lm(data pel[,a] ~ data pel[,b]))
           pvalsout pel = c(pvalsout pel, pvals)
           b = b + 1
      }
      a = a + 1
}
output pel = matrix(pvalsout pel, nrow = length(data pel[1,]), ncol =
length(data pel[1,]), byrow=T)
write.table(output_pel, "p-values pellet.csv", sep = ",")
c = 1
d = 1
pvalsout sup = NULL
for (c in 1:length(data sup[1,])) {
      for (d in 1:length(data sup[1,])) {
           pvals = lmp(lm(data sup[,c] ~ data sup[,d]))
           pvalsout sup = c(pvalsout sup, pvals)
           d = d + 1
      }
      c = c + 1
}
output sup = matrix(pvalsout sup, nrow = length(data sup[1,]), ncol =
length(data sup[1,]), byrow=T)
write.table(output sup, "p-values supernatant.csv", sep = ",")
```