Supplementary information

Uncoupling of microbial community structure and function in decomposing litter across beech forest ecosystems in Central Europe

Witoon Purahong, Michael Schloter, Marek J Pecyna, Danuta Kapturska, Veronika Däumlich, Sanchit Mital, François Buscot, Martin Hofrichter, Jessica LM Gutknecht, Dirk Krüger

Table S1. Statistical values from 2-way ANOVA of all parameters used in this study. Data on oxidative enzyme activities are derived from Purahong et al.¹.

Parameter	2 way ANOVA			
	FMPs	DAI	FMPs x DAI	
Fungal : Bacteria ratio	F = 28.47,	F = 77.83,	F = 16.87,	
	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	
Total microbial biomass	F = 8.791,	F = 25.46,	F = 4.21,	
	P = 0.001	<i>P</i> < 0.001	P = 0.005	
i15:0, Gram-positive bacteria	F = 37.04,	F = 68.10,	F = 19.43,	
biomass	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	
16:1ω7c, Gram negative bacteria	F = 21.50,	F = 44.49,	F = 8.63,	
biomass	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	
10Me16:0, actinobacteria	F = 51.13,	F = 120.10,	F = 40.69,	
biomass	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	
17:0 cyclo and 19:0 cyclo,	F = 23.70,	F = 37.05,	F = 11.50,	
anaerobic bacteria biomass	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	
18:2ω6,9c, general fungal	F = 19.99,	F = 48.38,	F = 10.91,	
biomass	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	
Cellobiohydrolase	F = 0.75,	F = 11.33,	F = 2.84,	
	P = 0.483	<i>P</i> < 0.001	P = 0.031	
Xylosidase	F = 6.65,	F = 6.87,	F = 1.12,	
	P = 0.005	P = 0.002	P = 0.379	
β-glucosidase	F = 1.92,	F = 9.75,	F = 3.35,	
	P = 0.169	<i>P</i> < 0.001	P = 0.015	
N-acetylglucosaminidase	F = 4.61,	F = 1.76,	F = 7.11,	
	P = 0.020	P = 0.183	<i>P</i> < 0.001	
Acid phosphatase	F = 5.01,	F = 1.31,	F = 7.82,	
	P = 0.015	P = 0.295	<i>P</i> < 0.001	
Laccase	F = 16.82,	F = 3.40,	F = 1.29,	
	<i>P</i> < 0.001	<i>P</i> = 0.034	P = 0.301	
Peroxidase	F = 1.19,	F = 5.39,	F = 0.80,	
	P = 0.320	P = 0.006	P = 0.582	
Manganese peroxidase	F = 5.90,	F = 1.58,	F = 0.78,	
	P = 0.008	P = 0.220	P = 0.593	

Table S2. Correlations among total PLFA, PLFA indicators and enzyme activities (significant values (P < 0.05), are given in bold).

	total_bior	Actinomy	anaerobic	Gram+	Gram-	fungi	MNP	Per	L	Р	х	В	N
total_biomass													
Actinomycetes													
anaerobic_bacteria		0.954	•										
Gram+		0.956	0.967										
Gram-		0.861	0.908	0.930									
fungi		0.768	0.823	0.841	0.960								
MNP	0.154	0.170	0.159	0.179	0.158	0.105							
Per	-0.085	-0.243	-0.225	-0.245	-0.158	0.011	0.095						
L	-0.216	-0.336	-0.362	-0.279	-0.281	-0.145	-0.119	0.480					
Р	0.121	0.112	0.217	0.204	0.138	0.073	-0.009	-0.024	-0.022				
Х	0.116	-0.093	-0.045	0.028	0.089	0.135	0.297	0.146	0.102	0.086			
В	0.316	0.115	0.247	0.262	0.329	0.309	0.086	0.209	0.109	0.791	0.369		
N	-0.046	-0.241	-0.099	-0.121	-0.036	-0.045	0.037	-0.026	0.025	0.429	0.600	0.497	
С	-0.068	-0.266	-0.168	-0.172	-0.089	-0.013	0.289	0.443	0.221	0.220	0.688	0.533	0.530

Abbreviations: MNP = Mn-peroxidase, Per = general peroxidase, L = laccase, P = acid phosphatase, X = Xylosidase, $B = \beta$ -glucosidase, N = N-acetylglucosaminidase

Forest management prestice	Litter composition (%)				
Forest management practice	Fagus sylvatica	Acer sp.	Fraxinus sp.		
Beech age-class forest (BA)	85	10	5		
Beech selection cutting forest (BS)	90	10	0		
Beech unmanaged forest (BU)	100	0	0		

Table S3. Information on the litter composition for individual forest sites¹.

Nutrient	Age-class beech forest (BA)	Selection cutting beech forest (BS)	Unmanaged beech forest (BU)
Total C (%)	47.61±0.17	47.34±0.16	48.81±0.22
Total N (%)	0.97±0.01	1.04 ± 0.00	0.84 ± 0.03
C/N	48.92±0.20	45.52±0.15	58.38±2.18
Total lignin/N	43.13±0.25	39.74±0.00	56.27±1.90
Initial Mg (μ g/g dry mass)	204.00±50.27	294.33±197.28	157.93±54.19
Initial K ($\mu g/g$ dry mass)	3076.67±545.01	4596.67±2500.11	2443.33±120.97
Initial Ca ($\mu g/g dry mass$)	593.33±142.55	964.33±576.11	344.33±70.61
Initial P ($\mu g/g \ dry \ mass$)	187.67±41.50	152.67±27.43	157.33±20.84
Initial Mn (μ g/g dry mass)	32.87±9.64	26.47±11.65	20.53±5.56
Initial Fe $(\mu g/g \ dry \ mass)$	5.60±2.52	4.67±2.80	7.37±9.14
Initial Cu $(\mu g/g dry mass)$	0.91±0.37	0.62 ± 0.07	0.40 ± 0.04
Initial Co $(\mu g/g dry mass)$	0.01±0.00	0.02±0.01	0.01 ± 0.00
Initial V ($\mu g/g$ dry mass)	0.02±0.00	0.02±0.00	0.02±0.02

Table S4. Initial chemical composition of dried leaf litter under different forest management practices (Mean \pm SD, n = 3)¹.

Table S5. Correlation among different PLFA markers for (A) Gram-positive bacteria (15:0 iso, 15:0 ante, 16:0 iso, 17:0 iso and 17:0 ante), (B) Gram-negative bacteria (16:1 ω 5c, 16:1 ω 7c and 16:1 ω 9c) and (C) general fungi (18:1 ω 9, 18:2 ω 6,9c and 18:3 ω 3,6,9c). All correlations were significant (*P* < 0.001).

(A) Gram-positive bacteria

	a15:0	i15:0	i16:0	a17:0
a15:0				
i15:0	0.97			
i16:0	0.98	0.99		
a17:0	0.98	0.98	1.00	
i17:0	0.93	0.99	0.98	0.97

(B) Gram-negative bacteria

	16:1ω5c	16:1ω7c
16:1ω5c		
16:1ω7c	0.94	
16:1ωw9c	0.98	0.97

(C) General fungi

	18:1ω9	18:2\u00fc6,9c
18:1ω9		
18:2w6,9c	0.97	
18:3w3,6,9c	0.95	0.94

Figure S1. Percent of initial nitrogen (N), carbon (C), calcium (Ca), potassium (K), magnesium (Mg), and phosphorous (P) during decomposition under different forest system management practices¹. European beech age-class forest (red, BA), European beech selection cutting forest (green, BS) and unmanaged deciduous forest reserves dominated by European beech (black, BU) (mean \pm SD, n = 3).

Reference

1. Purahong, W. et al. Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from Central European forests. *PLoS ONE* 9: e93700 (2014).