
Supp. Table I: Molecules regulating Akt activity and cardiac functions. 

Molecules  Action Cardiovascular functions Refs 
PI (3,4,5) P3-
dependent protein 
kinase-1 (PDK1) 

PDK1 phosphorylates Akt at T308 
residue and increases its activity. 

PDK1 deficiency induces heart 
failure in mice due to reduced 
cardiomyocyte size, cardiac muscle 
mass and increased sensitivity of 
cardiomyocytes to hypoxia.  

 
1-3 

Mammalian target 
of rapamycin 
Complex 2 
(mTORC2) 

mTORC2 phosphorylates Akt at 
S473 residue and enhances its 
catalytic activity. 

mTORC2 mediates pro-survival 
signaling in adult cardiomyocytes. 

 
4, 5 

Inositol 
hexakisphosphate 
kinase 1 (IP6K1) 

IP6K1 produces diphosphoinositol 
pentakiphosphate which competes 
with Akt PH domain for binding to 
PIP3.  

Inhibition of IP6Ks enhances Akt 
activity in mesenchymal stem cells 
to improve their therapeutic efficacy 
for treating myocardial infarction. 

 
6, 7 

Inositol 
polyphosphate 
multikinase (IPKs) 

IPK physiologically generates PIP3 
to activate Akt. 

Expresses mostly in the developing 
heart. Homozygous IPK2-null mice 
are smaller than normal controls, 
and they die embryonically during 
E9.5–E10. 

 
8, 9 

PTEN PTEN negatively regulates 
intracellular levels of PIP3 and 
thereby inhibits Akt activity. 

Muscle-specific deletion of PTEN 
induces basal cardiac hypertrophy, 
accompanied with mild reduction in 
LV systolic function. However, 
cardiac specific deletion of PTEN 
protects mice from post MI cardiac 
remodeling.  

 
10-14 

SH2 domain-
containing inositol 
5′-phosphatases 
(SHIP); Inositol 
polyphosphate-5-
phosphatase  
(INPP5) 
 

Inositol 5- phosphatases hydrolyze 
PI (3,4,5) P3 and thereby negatively 
regulates the growth factor-mediated 
activation of Akt. 

INPP5f knockout mice exhibit 
exaggerated hypertrophy with 
reactivation of the fetal genes 
during cardiac stress.  

 
15-18 

PH domain leucine-
rich repeat protein 
phosphatases 
(PHLPP-1 and -2 ) 

PHLPP protein phosphatases inhibit 
Akt by dephosphorylating it at S473 
residue. 

PHLPP-1 knockout cardiomyocytes 
show increased survival during 
ischemia/ reperfusion injury due to 
increased activity of Akt.  

 
19-23 

Protein kinase C-
related kinase 2 
(PRK2) 

PRK2 directly binds and inhibits Akt 
by preventing phosphorylation at 
T308 and S473 residues.  

The functional role of PRK2 in the 
heart is not known. 

 
24 

Protein 
phosphatase 2A 
(PP2A) 

PP2A dephosphorylates Akt at T308 
residue. 

PP2A hyper activation leads to 
contractile dysfunction in the heart 

 
25-28 

PHLDA3 PHLDA3, the PH domain-only 
protein, directly interferes with 
binding of membrane lipids to Akt, 
thereby inhibiting Akt activity. 

Not studied in cardiomyocytes.  
29 



TCL1 TCL1 oncogene binds to the PH 
domain of Akt, promotes nuclear 
transport, and enhances its kinase 
activity.  

Not studied in cardiomyocytes  
30, 31 

Zyxin Zyxin, a cytoskeletal LIM-domain 
protein targets Akt into the nucleus 
and promotes Akt activity. 

Zyxin promotes cardiomyocyte 
survival. 

 
32, 33 

Carboxyl-terminal 
modulator protein 
(CTMP) 

CTMP binds to the carboxyl-terminal 
of Akt at the plasma membrane and 
inhibits phosphorylation of Akt at 
T308 and S473.  

Not studied in cardiomyocytes.  
34, 35 

TRAF6 E3 Ligase  TRAF6-mediated lysine-63 
ubiquitination of the PH domain 
promotes Akt membrane recruitment, 
and phosphorylation upon growth-
factor stimulation of cells. 

Muscle specific deletion of TRAF6 
inhibits skeletal muscle wasting in 
mice. Endothelial deficiency of 
TRAF6 attenuated the 
development of atherosclerosis in a 
mouse model.  

 
36-38 

Skp2-SCF E3 
ligase  

Skp2-SCF E3 ligase poly- 
ubiquitinates Akt to promote 
membrane recruitment in response 
to EGF stimulation of cells. 

Not studied in cardiomyocytes  
39 

NEDD4-1 E3 ligase Controls lysine-63 ubiquitin-
dependent trafficking of 
phosphorylated AKT to perinuclear 
region, where it is released into 
cytoplasm or imported into the 
nucleus.   

Not studied in cardiomyocytes  
40 

Tetratricopeptide 
repeat domain 3 
(TTC3) E3 ligase 

TTC3 binds to phosphorylated Akt, 
facilitates its ubiquitination and 
degradation within the nucleus. 

Not studied in cardiomyocytes  
41 

Poly(ADP-ribose) 
polymerase-1 
(PARP1) 

Inhibition of PARP-1 increases Akt 
phosphorylation. 

PARP-1 deficiency protects mice 
from angiotensin II-induced cardiac 
hypertrophy, ischemia reperfusion 
injury and diabetic cardiomyopathy. 

 
42-47 

BSD domain–
containing signal 
transducer and Akt 
interactor (BSTA) 

BSTA-Akt1 interaction promotes the 
mTORC2 - Akt1 association and 
phosphorylation of Akt1 at 
S473 during growth factor 
stimulation. 

Not studied in cardiomyocytes  
 
48 

Cylindromatosis 
factor (CYLD) 

Deubiquitination of Akt by CYLD 
suppresses growth factor–mediated 
ubiquitination, membrane recruitment 
and activation.  

CYLD activation inhibits 
inflammation and proliferation of 
vascular cells 

 
49, 50 

SIRT1  SIRT1 mediated deacetylation 
promotes Akt-PIP3 binding, 
membrane recruitment, and 
phosphorylation upon growth-factor 
stimulation. 

Chronic SIRT1 activation induces 
cardiac hypertrophy and heart 
failure in mouse models. However, 
short term activation protects the 
heart from ischemia reperfusion 
injury.  

 
51-54 

SIRT2 SIRT2-mediated deacetylation of Akt SIRT2 depletion reduces TNFα  



promotes its phosphorylation.  stimulated necrosis, thus reduces 
ischemia reperfusion injury in the 
mouse heart. 

55, 56 

O-GlcNAcase O-GlcNAcylations of Akt disrupts its 
interaction with PDK1, thereby 
inhibiting Akt phosphorylation at 
T308 residue.  

O-GlcNAcase activation improves 
contractile function of the diabetic 
heart.  

 
57-61 

Glutaredoxin Glutaredoxin, a protein disulfide 
oxidoreductase reduces oxidative 
modification of Akt, thereby 
maintaining Akt phosphorylation 
status. 

Glutaredoxin activation protects the 
heart from adverse ventricular 
remodeling induced by chronic MI 
and doxorubicin-induced 
cardiotoxicity. 

 
62-65 
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