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SUPPLEMENTARY MATERIAL M1. Description of
the multivariate statistical methods that were applied in the
analyses of the kidney rejection data, including parameter
tuning steps and splitting of the data into training and testing
sets for the classification analysis.

a. Principal Component Analysis

PCA (Jolliffe, 2002) is a classical dimension reduction and
feature extraction tool in exploratory analysis, and has been
applied in a wide range of fields. PCA has often been used as a
pre-processing step for subsequent analysis. PCA projects the
data into a new space spanned by the principal components (pc),
which are uncorrelated and orthogonal. The principal compo-
nents are linear combinations of the original variables. Each
loading vector associated to each pc, indicate the contribution of
each gene or protein to each pc. The pcs and the loading vectors
are defined so that the variance of each pc is maximised. One
popular criterion to choose the number of pcs is based on the
cumulative percentage of explained variance, as the pcs are
ordered by decreasing explained variance. For the case of high
dimensionality, many alternative ad hoc stopping rules have
been proposed without, however, leading to a consensus
(see (Cangelosi & Goriely, 2007) for a thorough review). In our
case we applied the elbow criterion to the PCA scree plot.

b. Independent Principal Component Analysis

PCA proved unsuccessful to highlight a ‘natural’ separa-
tion between the AR and the NR samples. Another explor-
atory method, Independent Principal Component Analysis
(IPCA,(Yao, Coquery, & Lê Cao, 2012)) was envisaged as an
alternative to PCA. IPCA is a variant of Independent Com-
ponent Analysis (Comon, 1994; Hyvarinen et al., 2002)
which became a popular multivariate analysis tool in mo-
lecular biology. In contrast to PCA, which assumes orthog-
onal (i.e., uncorrelated) components, ICA requires the
components to be statistically independent, which means
that the values of one component provide no information
about the values of other components. When using ICA, we
make the assumption that the variables that we measure
depend on some biological or environmental factors that
are assumed to be statistically independent. These factors are
the independent components we are searching for. When
applying ICA, we assume that the observed data have been
determined by some unknown fundamental factors, which
are independent of each other. It has been shown that due to
its independence condition, ICA might be more suitable to
some metabolomic studies and outperform PCA (Scholz,
Gatzek, Sterling, Fiehn, & Selbig, 2004; Wienkoop et al.,
2008). IPCA was recently proposed to further denoise the
independent components and remove as many irrelevant
variables as possible (see (Yao et al., 2012) for more details).

c. Partial Least Squares Discriminant Analysis
and its sparse variant

In this study, we were particularly interested in Partial
Least Squares Discriminant Analysis (PLS-DA,(Barker &

Rayens, 2003)), a special case of Partial Least Squares for a
supervised framework. Similar to LDA, this approach seeks
optimal components, which are linear combinations of vari-
ables (e.g. genes or proteins) that best discriminate the dif-
ferent conditions (e.g. rejection status).

In order to obtain more interpretable results regarding the
role of the genes or proteins in PLS-DA, a sparse approach
has recently been developed (sPLS-DA, (Lê Cao et al.,
2011)) to select the best predictor variables within the model.
The result is a parsimonious model built on a small subset of
variables. In sPLS-DA two parameters need to be tuned: the
total number of components (also called dimensions) onto
which the data will be projected, and the number of variables
to select on each component. It has been shown that often, G-
1, where G is the number of classes or conditions, is the
optimal number of components to use (Lê Cao et al., 2011).
In the acute rejection case study with two classes (AR and
NR) this suggests to focus on one component.

Parameter tuning. In this study, we divided the original
data set into a training and a testing set from the initial cohort
of 40 patients, 13 AR and their time-matched NR samples
were randomly selected to constitute the training set. Strati-
fied sampling was performed by time of rejection (early vs.
late) to reduce the impact of this parameter as a potential
confounder in light of the earlier exploratory results with
PCA and IPCA. Two sPLS-DA classifiers were built using
the genomic and proteomic training sets, and tested on the
remaining 14 samples (7 AR and 7 time-matched NR).

The number of variables for a parsimonious model was
selected for the first (smallest) model where the average
classification error (CE) rate fell within one standard error of
the minimum average CE rate based on 100 times 5-fold cross-
validation runs on the training data. Figure S4 indicates that for
the genomic data, 90 probe-sets were selected (a) while 21
protein groups were selected for the proteomic data (b).

d. sparse Partial Least Squares

Partial Least Square regression (S. Wold, Sjostrom, &
Lennart, 2001) is a generalization to PLS-DA in the case
where two data sets measure the expression or abundance of
two different types of features (here gene expression and
protein abundance on the same samples) on the same sam-
ples. The difference with PLS-DA is that the information
from both data set is integrated in an unsupervised manner
(no prior biological knowledge on the patients’ rejection
status is included in the model). PLS relates and integrates the
two data sets by a linear multivariate model while also
modeling the data structure. PLS is particularly useful for
analysing noisy, collinear, even incomplete highly dimen-
sional data, see (Boulesteix & Strimmer, 2007) for a review.

Similar to the multivariate approaches presented earlier,
PLS performs successive decompositions of the two data sets
into new variables, the PLS components, which should be
fewer in number than the total number of measured features,
orthogonal to each other within each data set, and estimated
as linear combinations of the original variables from both



data sets (the weight coefficient of each variable is indicated
in the associated loading vectors). PLS relates both matrices
by maximising the covariance between each pair of PLS
components. PLS can be applied within a regression- or a
canonical framework, the latter models a symmetric rela-
tionship between the two data sets, i.e. extracting the com-
mon information between the two platforms similar to the
framework of another multivariate method called Canonical
Correlation Analysis, CCA(Hotelling, 1936)). In this paper,
we primarily focus on the canonical framework.

A ‘sparse’ approach was recently developed (sPLS, (Lê
Cao, Martin, et al., 2009; Lê Cao et al., 2008)) to select
relevant subsets of variables from both sets. When modeling
a symmetric relationship between the two data sets, we are
primarily interested in selecting the best subsets of correlated
features, within each data set and across data sets (Lê Cao,
Martin, et al., 2009). sPLS is an unsupervised approach; but,
similar to supervised sPLS-DA, the number of components
(dimensions) and the number features to select need to be
tuned in each data set.

Parameter tuning. The sparse models were fitted with
one component and a selection of 100 genes and 50 proteins
on 10-folds ‘training’ data sets. We used a ‘stability analysis’,
proposed by (Meinshausen & Bühlmann, 2010), which re-

cords the frequency of the same feature to be selected across
several ‘training’ data sets where 1 fold out of 10 was re-
moved to perturb the original data. This was performed 1,000
times to determine the most frequently selected genes and
proteins. The final selections include the variables selected
more than 70% of the time across the runs.

e. sparse Generalised Canonical Correlation Analysis

sGCCA is a sparse version of the methodology called
Generalized Canonical Correlation Analysis (Tenenhaus
et al., 2014), which provides a unifying framework for the
integration of multiple data sets. Similar to sPLS but in the
case of more than two data sets, the objective is to seek linear
combinations of variables from each data set (components) so
that each component explains its own data set, as well as the
other data sets for which we assume there is a high correlation
with its data set. The criterion to maximize is the covariance
between pairwise components from two data sets (also called
two ‘blocks’) at a time. The approach therefore requires an
input design matrix to define the connection between each
data set. Similarly to sPLS-DA, sGCCA can include an out-
come factor, therefore allowing a supervised framework.
Parameter tuning was performed as described above for the
sPLS approach.

SUPPLEMENTARY FIG. S1. Overview of blood samples that were collected for the 40 patients in this study. Figure S1
displays the data available, the selected samples and time-point matching for all 40 patients, together with biopsy- and
rejection treatment start-dates for the 20 AR patients. Red lines indicate Acute Rejection-patients (AR) and gray lines
represent Non-rejection patients (NR). Gray filled circles show availability of genomics and proteomics sample data at the
respective time post-transplant along the x-axis. Circles with an inside plus-sign represent the samples that were used in the
study. Red squares indicate the time of biopsy for acute rejection patients, and black inverted triangles show when rejection
treatment was initiated.



SUPPLEMENTARY FIG. S2. Scree plot of the Principal
Component Analysis. (a) Genomics and (b) Proteomics data.
Light blue indicate the number of chosen components (3).

SUPPLEMENTARY FIG. S3. PCA sample representation. Samples were projected on the first two to three principal
components for the genomics data (a, b) and the proteomics data (c, d).



SUPPLEMENTARY FIG. S4. Average classification error rate with standard error with respect to the number of
selected variables in a sPLS-DA model (1 component) for genomics (a) and proteomics (b) data. Classification errors are
determined by averaging over 100 · 5-fold cross-validation runs for each of the number of selected features on the 26-
sample training data. Shown in red is the location of the minimum classification error rate, while the number of selected
features based on the one-standard-error-rule is indicated in green. For the genomics classifier, the two points were the
same. The seven testing sample pairs that were used for testing in the supervised sPLS-DA analysis are: AR-2/NR-2, AR-5/
NR-5, AR-8/NR-8, AR-10/NR-10, AR-13/NR-13, AR-14/NR-14 and AR-15/NR-15. The remaining 13 AR/NR sample pairs
were used as the training set.



SUPPLEMENTARY FIG. S5. Stability analysis with sPLS. Using 10-fold cross validation over 1000 repetitions, the
most frequently selected genes and proteins were determined with an arbitrary cutoff of 0.7.

SUPPLEMENTARY FIG. S6. sPLS analysis. Sample representation (a) and variable representation (b) for the first two
dimensions.



SUPPLEMENTARY FIG. S7. Stability analysis with
sGCCA design 1. Using 10-fold cross validation over 1000
repetitions, the most frequently selected genes (a) and pro-
teins (b) were determined with an arbitrarily chosen cutoff
of 0.7.

SUPPLEMENTARY FIG. S8. Stability analysis with
sGCCA design 2. Using 10-fold cross validation over 1000
repetitions, the most frequently selected genes (a) and pro-
teins (b) were determined with an arbitrarily chosen cutoff
of 0.7.



SUPPLEMENTARY FIG. S9. sGCCA analysis with design 1. Sample representation on the genomics space (a) and the
proteomics space (b) for the first two dimensions for a selection of 46 genes and 64 proteins.

SUPPLEMENTARY FIG. S10. Clustered Image Maps (CIM) of 46 genes and 64 proteins selected with sGCCA-design
1 (left) and 41 genes and 60 proteins selected with sGCCA-design 2 (right). Genes are displayed in rows while proteins are
shown in columns. The blue (red) color represents regions where genes and proteins are highly negatively (positively)
correlated.


