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S1 DERIVATION OF A MAXIMUM A POSTERIORI
ESTIMATOR FOR A FACTORIZED MODEL

We here show that maximizing the posterior probability of
gene latent feature vectors and logistic function parametrization
conditioned on the observed phenotypes of double mutants is
equivalent to solving an optimization problem with an objective
function specified by Eq. (2) in the main manuscript. Reader is
referred to the main manuscript for the introduction of the used
notation and to Salakhutdinov and Mnih (2008); Park et al. (2013)
for a background on probabilistic factorized models.

The posterior distribution over the gene latent features U and V
and the parametrized logistic map Ψ is given by:
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We find a point estimate of unknown U, V and Ψ by maximizing
the log of the posterior distribution in Eq. (1):
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where C is a constant. If we fix the hyperparameters (i.e. variances
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minimizing the following objective function, which is the same as
Eq. (2) from the main manuscript:
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S2 QUANTITATIVE ANALYSIS OF GENE
ORDERING

In the article, we assess the accuracy of predicting the order of
genes by comparing it to the order in a known pathway. We
score the comparison by a standard measure of an AUC, an
area under the receiver operating characteristic (ROC). Here, we
explicitly show the corresponding ROC curves for both epistasis-
analysis approaches considered. Fig. S1 shows the ROC curves
for the ordering from KEGG pathways, and Fig. S2 for N-linked
glycosylation pathway.

S3 PREDICTION OF ALLEVIATING GENETIC
INTERACTIONS

We observe that the probability of alleviation predicted by Réd
is correlated to the strength of alleviating effects of a gene pair
(Fig. S3).

S4 SENSITIVITY AND REPEATABILITY ANALYSIS
We analyze the sensitivity of Réd to reduced measurement precision
by introducing increasing levels of random noise to the data set
of Jonikas et al. (2009) and, for each noise level, re-running
inference by Réd with a fixed initialization of matrix factors. For
every measurement of a single and double mutant in the data set we
sample the noise component from a Gaussian distribution with zero
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Fig. S1. The ROC curves for the prediction of gene ordering in KEGG
pathways by Réd, our proposed approach, and a Bayesian learning method
APN (Battle et al., 2010)). Each curve is annotated with its corresponding
area under the curve (AUC).
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Fig. S2. The ROC curves for the prediction of the edges in the N-linked
glycosylation pathway by Réd, our proposed approach, and a Bayesian
learning method APN (Battle et al., 2010). Each curve is annotated with
its corresponding area under the curve (AUC).

mean and standard deviation s, and add this value to the original
measurement. For each run, using a specific value for s, we compare
all estimates in P to its original, noise-free estimates. Fig. S4 shows
the correlation between the original estimates and estimates inferred
from the noisy data set. The results suggest that good probability
estimates of network relationships between genes are possible even
in settings with increased noise. Thus, Réd could also infer accurate

Fig. S3. Probabilities of alleviating gene pairs predicted by Réd are
correlated with the strength of alleviating interactions (Spearman r =

−0.704, p-value < 1 × 10−100). Notice that alleviation corresponds to
negative interaction values. Réd assigns higher scores to gene pairs with
stronger alleviating effects that to gene pairs that interact moderately.

networks from data that includes more noise than otherwise present
in the data set by Jonikas et al. (2009).

For twenty runs of Réd learning with different initializations of
matrix factors U and V, we estimate P for the edges potentially
connecting each pair of genes. For every run we compare all
probability estimates in P to the corresponding estimates from every
other run. The maximum difference for any two runs and for any pair
of genes is less than 1 × 10−8, demonstrating that Réd estimates
are highly repeatable and that the performance of Réd does not
substantially vary with initialization of the latent factors.

Similarly, we run Réd several times for different values of the
latent dimension k (k ∈ {40, 60, 80, 100, 120}). We compare the
corresponding probability estimates in P from every two runs. The
mean difference for any two runs and for any edge is less than 1 ×
10−3 and the standard deviation is less than 1× 10−2. Thus, Réd is
robust and performs well on the data by Jonikas et al. (2009) for a
broad range of sensible values for the latent dimension.

REFERENCES
Battle, A., Jonikas, M. C., Walter, P., Weissman, J. S., and Koller, D. (2010). Automated

identification of pathways from quantitative genetic interaction data. Molecular
Systems Biology, 6.

Jonikas, M. C., Collins, S. R., Denic, V., Oh, E., Quan, E. M., Schmid, V., Weibezahn,
J., Schwappach, B., Walter, P., Weissman, J. S., et al. (2009). Comprehensive
characterization of genes required for protein folding in the endoplasmic reticulum.
Science, 323(5922), 1693–1697.

Park, S., Kim, Y.-D., and Choi, S. (2013). Hierarchical bayesian matrix factorization
with side information. In Proceedings of the 23rd International Joint Conference on
Artificial Intelligence, pages 1593–1599.

Salakhutdinov, R. and Mnih, A. (2008). Probabilistic matrix factorization. In Advances
in Neural Information Processing Systems 20, pages 1257–1264.

2



Supplementary information: Gene network inference by probabilistic scoring of relationships from a factorized model of interactions

0.05 0.1 0.2 0.3 0.5 0.75 1 3
Level of noise

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

e
la

ti
o
n

 o
f 

P

Fig. S4. Sensitivity of P to measurement noise. We vary the level of
Gaussian noise introduced into phenotypic measurements of single and
double mutants for the Jonikas et al. data and compute the correlation
between P as estimated from the original or noise induced data.
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