Additional Information

Comparison of beta, beta-binomial, and binomial regressions

We have compared the ability of beta, beta-binomial, and binomial regres-
sions to detect differential methylation of individual sites on three simu-
lated case/control datasets. All datasets involve 60 samples (30 cases and
30 controls) with the distributions of methylation levels in each group as de-
scribed by Rakyan and others [2]. The coverage in each sample was set to 25.
The receiver operating characteristic (ROC) curves corresponding to the first
dataset are depicted on the left panel of Figure 1. These curves indicate that
beta-regression performs considerably worse than beta-binomial when the
observed methylation levels are estimated by the count ratios. The binomial
regression is somewhat more sensitive than beta and beta-binomial regres-
sions, but is incapable of achieving low false positive rates on this dataset.
The situation with the other two datasets is similar (Figure 1 center, right).
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Figure 1: ROC curves (Left) The methylation levels of the control samples are
Beta(1.5,6) distributed while the cases are a mixture with the methylation
level having Beta(1.5,6) distribution in 36% of samples and Beta(6,1.5) dis-
tribution in 64% of samples. (Center) The methylation levels of controls are
Beta(1.5,6) distributed and the levels of cases are a mixture of Beta(2,2) (in
72% of samples) and Beta(6, 1.5) (in 28% of samples). (Right) The methyla-
tion levels of cases and controls have Beta(36,4) and Beta(38, 2) distributions
respectively.



dataset | DM CpGs low | DM CpGs high | Non DM CpGs | coverage
A Beta(1.5,6.0) | Beta(6.0,1.5) | Beta(2.0,2.0) 15
B Beta(2.0,2.0) | Beta(6.0,1.5) | Beta(2.0,2.0) 15
C Beta(3.0,4.5) | Beta(6.0,1.5) | Beta(2.0,2.0) 20
D Beta(2.0,2.0) | Beta(6.0,1.5) | Beta(2.0,2.0) 25

Table 1: The description of the datasets on which RADMeth was compared
with MethPipe’s DM-detection method. The columns give the dataset id,
the distribution of methylation levels of DM CpGs in samples where they
had low and high methylation levels, the distribution of methylation levels of
non-differentially methylated CpGs, and the average coverage. Each dataset
contained 12 samples (6 with low methylation at DM CpGs and 6 with high
methylation).

RADMeth and MethPipe’s DM detection method

The DM detection method included in MethPipe methylation analysis pipeline
is designed to detect differential methylation within hypo-methylated regions
(i.e. regions with consistently low methylation) and so it is a less general DM
detection method than the other DM-detection methods described in this
work. We compared this method to RADMeth on four datasets. The data
sets differed from each other by the mean methylation levels of DM CpGs
in one group of samples (see Table 1): It was 0.2, 0.5, 0.4, and 0.5 for the
datasets (A), (B), (C), and (D) respectively. The coverage of the datasets
has also varied, but did not have a significant impact on the results.

Because MethPipe’s DM-detection method was designed to compare only
two samples at a time, we combined the replicates by pooling. The Jaccard
index between the set of CpGs identified as differentially methylated by this
method and the set of true differentially methyalted CpGs was 0.87 for the
dataset (A), 0.33 for the dataset (C), and 0 for the data sets (B) and (D).
The method performed well on the data set (A) because the vast majority of
DM CpGs resided in hypo-methylated regions due to their low methylation
levels. With the increase of the mean methylation levels, the performance of
this method drops very quickly. The RADMeth-based analysis yielded the
Jaccard indexes exceeding 0.80 for all datasets.



F6 M7 F12 neuron

NeuronFemalel2Mo 0 0 1 1
NeuronFemale6Wk 1 0 0 1
NeuronMale7Wk 0 1 0 1
NonNeuronFemalel2Mo 0 0 1 0
NonNeuronFemale6 Wk 1 0 0 0
NonNeuronMale7Wk 0 1 0 0

Figure 2: The model matrix describing the mouse frontal cortex dataset. The
first three columns of the matrix mark samples taken from individuals of the
same age and sex. The last column marks neuron samples and corresponds
to the test factor.

DM regions in Arabidopsis [3] and mouse cortex datasets [1]

To analyze each dataset we used appropriate model matrices (depicted on
Figures 2 and 3) and combined the p-values corresponding to each CpG site
with the p-values of CpG sites located within the 200 bp from it (the -b
parameter in the wand regression module, see RADMeth manual for more
information).

RADMeth identified 5K DM regions spanning at least 10 CpG sites in
the Arabidopsis dataset and 72K DM regions spanning at least 10 CpGs in
the mouse cortex dataset. The histograms with lengths, numbers of CpG
sites, and GC content of these regions are depicted on Figure 4.

Two-group comparisons: replicates and coverage

The ability of RADMeth and the other methods to detect differential methy-
lation depends on the number of replicates, their coverage, and the design
of the experiment. We performed a simulation study to determine the min-
imum coverage required to reliably detect differential methylation in two-
group datasets containing 3, 4, and 5 replicates in each group (using the
parameters for dataset (A) described in Table 1 which correspond to rather
large methylation changes between the groups). The 3 replicate case required
the minimum average coverage of 9 to detect differentially methylated regions
giving the Jaccard index of 0.75 or above. In the 4 and 5 replicate case, the
datasets with average coverage of 7 and 4 gave Jaccard indexes above 0.80.



int leaf
leaf rep_1 1 1
leaf _rep_2 1 1

leaf rep_H4

1 1
infl_rep_1 1 0
infl_rep_2 1 0

infl rep 98 1 0

Figure 3: The model matrix describing the Arabidopsis dataset. This model
matrix encodes a simple two-group experimental design. The last column
corresponds to the test factor.

Combining evidence for differential methylation

We recommend calculating correlation and subsequently combining the p-
values of sites located within 200 bp. In our experience correlation typically
becomes much weaker beyond this point, so the users do not generally need
to alter this parameter. However, it may be approprtiate to increase the
value of this parameter when analyzing very noisy data.
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Figure 4: Histograms of the number of CpG sites (top), length (middle), and
GC content (bottom) of the DM regions from the mouse frontal cortex (left)
and Arabidopsis (right) datasets.



