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Identification for multiple independent exposure induced confounders

of the mediator

Suppose that N consists of multiple binary variables N = (N1, ..., Nk), and suppose that the

nonparametric structural equations model (7)− (11) holds upon replacing equation (9) with the k

equations:

Nj = gNj
(
C,E, εNj

)
, j = 1, ..., k

such that
{
εNj : j = 1, ..., k

}
are mutually independent and are jointly independent of {εC , εE, εM , εY }.

As mentioned in the text, for this assumption to hold, all common causes of each pair of variables

in (N1, ..., Nk) would also need to be included in C, as illustrated in Figure 3. below.

Result 2: Assuming the nonparametric structural equations model (7) − (11), suppose that the

E − N Monotonicity Assumption holds for each of (N1, ..., Nk) = N , then E {Y (e,M (e∗))} is

nonparametrically identified by the following formula:

∑
m,n,n′,c

E (Y |e,m, n, c) Pr(M = m| e∗, n′ , c)
k∏
j=1

fj

(
nj, n

′

j, e, e
∗, c
)

Pr(C = c)
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where

fj

(
nj, n

′

j, e, e
∗, c
)

=



Pr{Nj = 1|e∗, c} if n′j = nj = 1

Pr{Nj = 1|e, c} − Pr{Nj = 1|e∗, c} if n′j = 0 and nj = 1

0 if n′j = 1 and nj = 0

Pr{Nj = 0|e, c} if n′j = nj = 0

Result 3: Assuming the nonparametric structural equations model (7) − (11), suppose that the

E −N Monotonicity Assumption holds for each of (N1, ..., Nk) = N , then the hazard function of

Y (e,M (e∗)) evaluated at y is nonparametrically identified and satisfies an additive hazards model

of the form:

λ0(y)

+

∑
m,n,n′,c γ (y, e,m, n, c) Γ (y, e,m, n, c) Pr(M = m| e∗, n′ , c)

∏k
j=1 fj

(
nj, n

′
j, e, e

∗, c
)

Pr(C = c)∑
m,n,n′,c Γ (y, e,m, n, c) Pr(M = m| e∗, n′ , c)

∏k
j=1 fj

(
nj, n

′
j, e, e

∗, c
)

Pr(C = c)

where Γ (y, e,m, n, c) = exp
{
−
∫ y
0
γ (u, e,m, n, c) du

}
and fj

(
nj, n

′
j, e, e

∗, c
)
defined in Result 2.

Decomposition of NDE(e, e∗)

Consider again the setting of a binary recanting witness N. Recall that NDE(e, e∗) captures the

effects along the following two pathways: E → Y and E → N → Y. We note that

E {Y (e,M (e∗))} − E {Y (e∗,M (e∗))} = E {Y (e,M (e∗) , N(e))− Y (e,M (e∗) , N(e∗))}

+ E {Y (e,M (e∗) , N(e∗))− Y (e∗,M (e∗) , N(e∗))}
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E {Y (e,M (e∗) , N(e∗))− Y (e∗,M (e∗) , N(e∗))} captures the pathway E → Y , the portion of the

direct effect not mediated by N , while E {Y (e,M (e∗) , N(e))− Y (e,M (e∗) , N(e∗))} captures the

pathway E → N → Y, the portion of the direct effect mediated by N. Under monotonicity of

the effects of exposure on the recanting witness, we show next that E {Y (e,M (e∗) , N(e∗))} is

identified and therefore, both of these effects are nonparametrically identified.

Corollary 1: Assuming the nonparametric structural equations model (7) − (11), suppose that N

is binary, and E −N Monotonicity Assumption holds, then

E {Y (e,M (e∗) , N(e∗))} =
∑

m,n,n′,c

E (Y |e,m, n′, c) Pr(M = m| e∗, n′ , c)f
(
n, n

′
, e, e∗, c

)
Pr(C = c)

with f
(
n, n

′
, e, e∗, c

)
given in Result 1.

Corollary 1 extends to the context of multivariate binary confounder N under the assumptions

listed in Result 2. Details are omitted but are easily deduced from the presentation. Despite these

important generalizations of Result 1, identification under monotonicity is still somewhat limited

in that each Nj is restricted to be binary j = 1, ..., k.

A data illustration using Proc NLMIXED in SAS

We briefly illustrate the methodology developed in this paper in the context of simulated data.

We first generate data as would be observed in a randomized study of sample size 500 where E is

randomized with probability 1/2, N is dichotomous with event probability

Pr (N = 1|E) = {1 + exp(−0.5− 0.75E)}−1 ,
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and M and Y are continuous:

Y = 60 + 2E + 3M + 1.5N +MN + εY

M = 30 + 3E + 4N + εM

where εY is normal with mean zero and variance 1.5 and εM is standard normal. There is no

pre-exposure confounder C in these simulated data. Under monotonicity, it is easy to verify that

NDE(1, 0) = 6. 877 in these data. We describe how this direct effect can be estimated with Proc

NLMIXED in SAS by providing sample code below. Using this sample code, we obtained an

estimate of NDE(1, 0) equal to 6.383 (95% confidence interval=(3.8328− 8.9347)).

To further illustrate the methods developed in this paper, consider an alternative data gener-

ating mechanism mimicking an observational study with a single binary confounder

C ∼ Bernoulli(1/3);

E|C ∼ Bernoulli((1 + exp(−0.5− 0.6C))−1);

N = 50− 0.75E + 0.5C +N(0, 1);

M = 30 + 3E + 3C + 2N +N(0, 1);

u ∼ N (0, 2)

Y = 60 + 2E + 4C + 3M + 1.5N + EN + 2EM +N(0, 1.5)

We aim to estimate NDE(1, 0, c), which under the assumption of no M −N interaction, is equal
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to

NDE(1, 0, 1) = 318. 63,

NDE(1, 0, 0) = 310. 13.

We further illustrate how this effect estimate can be obtained in Proc NLMIXED in SAS by

providing sample code in the appendix. Using this sample code, we obtained the following estimates

NDE(1, 0, 1) = 317.52 : 95% confidence interval = (316.62− 318.43)

NDE(1, 0, 0) = 309.60 : 95% confidence interval = (308.86− 310.35)

SAS CODE

The data set ’data_example’ contains variables E,N,M, Y from the simulated randomized

study example.

The first sample code produced the maximum likelihood estimate of NDE(1, 0) reported in

the text.

proc nlmixed data=sample_example;

parms alpha_0=1 alpha_e=2 alpha_m=3 alpha_n=4 alpha_mn=2

theta_0=2 theta_e=3 theta_n=1

eta_0=-1 eta_e=0.4 sigma_y=0.5 sigma_m=2;

MuY= alpha_0+alpha_e*E+alpha_m*M+alpha_n*N

+alpha_mn*M*N;

ll_y=-((Y-MuY)**2)/(2*sigma_y)-0.5*log(sigma_y);
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MUm=theta_0+theta_e*E+theta_n*N;

ll_m=-((M-MuM)**2)/(2*sigma_M)-0.5*log(sigma_M);

p_n=(1+exp(-(eta_0+eta_e*E)))**-1;

ll_n= N*log (p_n)+(1-N)*log(1-p_n);

ll_o=ll_y+ll_m+ll_n;

omega= (1+exp(-(eta_0+eta_e)))**-1-(1+exp(-(eta_0)))**-1;

model Y ~general(ll_o);

estimate ’nde’alpha_e+(alpha_mn*theta_0+alpha_n)*omega;

run;

The data set ’data_example_2’ contains variables C,E,N,M, Y from the simulated obser-

vation study example.The following sample code produces the maximum likelihood estimates of

NDE(1, 0, c), c = 0, 1, reported in the text.

proc nlmixed data=sample_example;

parms alpha_0=1 alpha_e=2 alpha_c=1 alpha_m=3 alpha_n=4

alpha_me=2 alpha_ne=1 theta_0=2 theta_e=3 theta_c=1 theta_n=0.5

eta_0=-1 eta_e=0.5 eta_c=1 sigma_y=0.5 sigma_m=2 sigma_n=1 ;

MuY= alpha_0+alpha_c*c+alpha_e*E+alpha_m*M+alpha_n*N+alpha_ne*E*N

+alpha_me*E*M;

ll_y=-((Y-MuY)**2)/(2*sigma_y)-0.5*log(sigma_y);

MUm=theta_0+theta_c*C+theta_e*E+theta_n*N;

ll_m=-((M-MuM)**2)/(2*sigma_M)-0.5*log(sigma_M);

MUn=eta_0+eta_c*C+eta_e*E;

ll_n= -((N-MuN)**2)/(2*sigma_N)-0.5*log(sigma_N);
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ll_o=ll_y+ll_m+ll_n;

theta_00 = theta_0+theta_n*eta_0;

theta_cc = theta_c+theta_n*eta_c;

theta_ee = theta_e+theta_n*eta_e;

model N~general(ll_o);

estimate ’nde(1,0,1)’alpha_e+alpha_me*(theta_00+theta_cc)

+alpha_n*eta_e+alpha_ne*(eta_0+eta_e+eta_c);

estimate ’nde(1,0,0)’alpha_e+alpha_me*(theta_00)

+alpha_n*eta_e+alpha_ne*(eta_0+eta_e);

run;
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PROOFS

Proof of Result 3: By Result 1, the log-survival curve of Y (e,M (e∗)) at y is given by

log
∑

m,n,n′,c

exp

{
−
∫ y

0

[λ0(y) + γ (u, e,m, n, c)]du

}

× f (M = m|E = e∗, N = n′, C = c)
k∏
j=1

fj

(
nj, n

′

j, e, e
∗, c
)
f (C = c)

The result follows upon differentiation of this function with respect to y and multiplication by (−1).
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Proof of Result 4: Recall that E {Y (e,M (e∗))}

=
∑

m,n,n′,c

E (Y |e,m, n, c) f (M = m|E = e∗, N = n′, c)

× f (N(e, c) = n,N(e∗, c) = n′|c) f (c)

=
∑

m,n,n′,c

βm (e,m, c) + βn (e, n, c) +

=0 by assumption︷ ︸︸ ︷
βm,n (e,m, n, c) + βe,c (e, c)

 (by equation (??) )

× f (M = m|E = e∗, N = n′, c) f (N(e, c) = n,N(e∗, c) = n′|c) f (c)

=
∑

m,n,n′,c

(
βm (e,m, c) + βn (e, n, c) + βe,c (e, c)

)
× f (M = m|E = e∗, N = n′, C = c) f (N(e, c) = n,N(e∗, c) = n′|c) f (c)

=
∑
m,n′,c

βm (e,m, c) f (M = m|E = e∗, N = n′, c) f (N(e∗, c) = n′|c) f (c)

+
∑
n,c

βn (e, n, c) f (N(e, c) = n|c) f (c) +
∑
c

βe,c (e, c) f (c)

=
∑
m,n′,c

βm (e,m, c) f (M = m|e∗, n′, c) f (N = n′|e∗, c) f (c) (by NPSEM independence)

+
∑
n,c

βn (e, n, c) f (N = n|e, c) f (c) +
∑
c

βe,c (e, c) f (c) (by NPSEM independence)

=
∑
m,c

βm (e,m, c) f (M = m|e∗, c) f (c) (by marginalization over n′)

+
∑
n,c

βn (e, n, c) f (N = n|e, c) f (c) +
∑
c

βe,c (e, c) f (c)

proving the result.
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Proof of Result 1: Assuming the NPSEM (7)− (11),

E {Y (e,M (e∗))} =
∑

y,m,n,n′,c

yf (Y (e,m, n, c) = y,M (e∗, n′, c) = m,N (e, c) = n,N(e∗, c) = n′, C = c)

=
∑

y,m,n,n′,c

yf (Y (e,m, n, c) = y|M (e∗, n′, c) = m,N (e, c) = n,N(e∗, c) = n′, C = c)

× f (M (e∗, n′, c) = m|N (e, c) = n,N(e∗, c) = n′, C = c)

× f (N (e, c) = n,N(e∗, c) = n′|C = c)

× f (C = c)

=
∑

y,m,n,n′,c

yf (Y (e,m, n, c) = y|E = e,M (e, n, c) = m,N (e, c) = n,C = c)

× f (M (e∗, n′, c) = m|E = e∗, N(e∗, c) = n′, C = c)

× f (N (e, c) = n,N(e∗, c) = n′|C = c)

× f (C = c) (by NPSEM independence)

=
∑

y,m,n,n′,c

yf (Y = y|E = e,M = m,N = n,C = c)

× f (M = m|E = e∗, N = n′, C = c) f (N(e, c) = n,N(e∗, c) = n′|C = c) f (C = c)

(by consistency)

then, under E −N Monotonicity Assumption,

Pr (N (e) = 0, N(e∗) = 1|c) = 0.

and

Pr (N (e) = 1, N(e∗) = 1|c) = Pr ( N(e∗) = 1|c) = Pr{N = 1|e∗, c}
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Similarly,

Pr (N (e) = 0, N(e∗) = 0|c) = Pr ( N(e) = 0|c) = Pr{N = 0|e, c}.

This implies

Pr (N (e) = 1, N(e∗) = 0|c)

= 1− Pr (N (e) = 1, N(e∗) = 1|c)− Pr (N (e) = 0, N(e∗) = 0|c)

= Pr{N = 1|e, c} − Pr{N = 1|e∗, c}

proving the result.

Proof of Result 2:

E {Y (e,M (e∗))} =
∑

y,m,n,n′,c

yf (Y = y|E = e,M = m,N = n,C = c)

× f (M = m|E = e∗, N = n∗, C = c)

× f (N(e, c) = n,N(e∗, c) = n∗|C = c)

× f (C = c)

=
∑

y,m,n,n′,c

yf (Y = y|E = e,M = m,N = n,C = c)

× f (M = m|E = e∗, N = n∗, C = c)

×
k∏
j=1

f
(
Nj(e, c) = nj, Nj(e

∗, c) = n
′

j|C = c
)
f (C = c)

by independence of (N1(e, c), N2(e
∗, c)),...(Nj(e, c), Nj(e∗, c)) . Next by monotonicity of the effect
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of E on each Nj, one obtains as in the proof of Result 1

f
(
Nj(e, c) = nj, Nj(e

∗, c) = n
′

j|C = c
)

= fj

(
nj, n

′

j, e, e
∗, c
)

proving the result.
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