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SUPPLEMENTAL FIGURE LEGENDS 

 

SUPPLEMENTAL FIGURE S1. Score calculation in the proof of the continuous alignment 

method. Blue, reference dataset; red, dataset to align. f(x), value of the original signal at time x; t, 

unknown offset; toffset, original offset between both datasets; tsampling, time interval between two 

consecutive measurements of the signal; xi, original time points where the reference dataset has 

been measured; xscorei, time points where the score function is evaluated. 

 

SUPPLEMENTAL FIGURE S2. Interface of the PatchTrackingTools used for patch tracking 

and quality control (toolbox on the right side). The specimen is a live wild type fission yeast cell 

(middle left) expressing Fim1p-mEGFP. The bottom left image is the sum projection of cells 

imaged with a spinning disk confocal microscope over 5 consecutive 360 nm-spaced z-slices. 

The row of images at the top left shows the five consecutive z-slices for the patch in the yellow 

box in the bottom left image. The bottom right image is a montage of fluorescence micrographs 

generated automatically where each row corresponds to a z-slice and each column to a different 

time point. This allows the user to check quickly that all the fluorescence of the patch of interest 

has been collected with no other patch interfering. Images on the left part of the figure are color-

coded in function of pixel intensities using the ImageJ “Fire” lookup table (dark blue, lower 

intensities; bright orange, higher intensities). The bottom right montage has reversed contrast 

(white, lower intensities; black, higher intensities).  

 

SUPPLEMENTAL FIGURE S3. (A) Timing variability for the number of molecules of fimbrin 

for different patches. Each dot is the size of the horizontal gray lines in Figure 3B, i.e. represents 

the standard deviation along the x-axis for the normalized number of molecules. (B) Comparison 

of the quality of three alignment methods: alignment on the peak value; alignment minimizing 

the variability between datasets at the sampling resolution (1 s); and continuous alignment (using 

a 100 ms resolution). The points are the average and the vertical lines are the standard deviation 

of the Root Mean Square Difference (RMSD) between each dataset and the averaged dataset for 

the 24 tracks used in Figure 3D.  
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SUPPLEMENTAL FIGURE S4. Z-test for the average displacements of endocytic patches 

plotted in Figure 5B. In each figure, we perform a z-test at 95% testing the null hypothesis that 

the displacement at each time point is the same significance as at a reference time point (A: 0 s; 

B: 3 s; C: 6 s; D: 8 s, green dots on the plots; red line: threshold z-score to reject the null 

hypothesis with 95% confidence). (A) The displacements between time 4 s and 8 s are 

significantly different from the displacement at time 0 s. (B) The displacements between time 5 s 

and 7 s are significantly different from the displacement at time 3 s. (C) The displacements 

between time 0 s and 4 s are significantly different from the displacement at time 6 s. (D) The 

quality of the data at time 8 s is too low to conclude that the displacement at time 8 s is 

significantly different than the displacements at different time points except for t = 0 s.  

 

SUPPLEMENTAL FIGURE S5. Comparison of patches imaged at the bottom edge or in the 

middle plane of the cell. The resolution in z is smaller than the resolution in x and y in confocal 

microscopy. Therefore, data from patches from the middle of the cell give an accurate 

description of the movement perpendicular to the membrane and data from patches from the 

bottom of the cell give an accurate description of the movement parallel to the membrane. No 

significant difference is found between patches tracked in the middle or at the bottom of the cell. 

(A) Number of molecules; (B) Displacement; (C) Distance from origin. Olive, patches at the 

bottom of the cell; teal, patches in the middle of the cell; green, all patches pooled together. Dark 

colors, average values; light colors, standard deviations. Inset of (A) The relative standard 

deviation in the number of molecules is on average 20%.  

 

SUPPLEMENTAL FIGURE S6. Temporal evolution of patch distributions in cells from Figure 

6. (A) Number of patches. (B) Patch distribution in cells (red, densest tip; green: middle of the 

cell; blue, less dense tip). (C) Tip symmetry index. (D) OP50 index. In all panels, each subpanel 

corresponds to the cell with same color in Figure 8. 
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Proof of Continuous Alignment Method 

 

Julien Berro 

 

Let us consider 2 datasets of         datapoints that represent two independent measurements of the same signal 

     at sampling intervals           (Supplemental figure S1A). Consider these two samples have been measured at 

an unknown offset         from each other. The continuous alignment method aims to find this offset by minimizing 

the square difference between the piecewise linear interpolation of the sampled data for different offset  . Here we 

prove that the value of the offset   that minimizes this score is an estimate of the original unknown offset        . 

 

We call              , the piecewise linear interpolation of one datasets (blue curve, Supplemental figure S1) and 

                the piecewise linear interpolation of the other dataset, translated along the x axis with the offset t 

(blue curve, Supplemental figure S1).  

 

The score is evaluated every           at        
        

             (gray arrows, Supplemental figure S1). 

Let us assume without loss of generality             
     . 

 

For the following theorem, we also assume that the signal      is at least one time differentiable and that the higher 

order derivatives and the sampling interval are such that                      for               . This 

condition occurs asymptotically when           tends to 0. 

 

Theorem 1 .The score function of the continuous alignment method 
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Keeping the first differentiate only (Ndiff=1) (see below) 
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which is minimum (actually 0) when          . 

 

Note: the continuous alignment method becomes less efficient when the original signal has large second order 

derivative between 2 sampling points, that is the signal is far from a straight line between 2 consecutive sampling 

points. A higher sampling frequency (by decreasing            will therefore improve the continuous alignment. 

Note also that this formula shows that the continuous alignment method gives better results for signals with large 

first order derivatives. Indeed, if the first order derivative is close to 0 (typically close to a straight line parallel to the 

x-axis), the continuous alignment method will not give good results, just like the regular “manual” alignment 

method, as expected intuitively. 

 

Presence of noise in the measured data 

Now, let us assume that each measurement contains noise. We note    the measurement noise of the reference 

dataset at time    Let assume that each measurement noise is independent from each other and is distributed around 

the same distribution with same average et same variance   . 

Noting          
   , we now have 
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We will now show that the score function of the continuous alignment method is still minimum for t =         in the 

presence of ‘reasonable’ noise in the measured data. 
 

Indeed, 
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The third term of the right-hand side is smaller than 
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The sum will be close to zero for large          since it is an estimator of the difference of the average error at    

and at            

 

Since the noise measurements are independent, and since           ⁄    (it is equal to 0 when the score is 

evaluated at   ), the second term of the right-hand side is an estimator of  
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Therefore, the continuous alignment method still works even in the presence of noise.  

 

Note 1: large noise decreases the efficiency of the method, especially when the variance becomes of the same order 

of magnitude as the second order term of the Taylor polynomial or when the estimation of the mean and the variance 

become less accurate for small numbers of sampling points. 

 

Note 2: in specific cases the continuous alignment method can be seen as a variant of the least-square method. In 

general it is not, since both signals to align contain independent noise. However, if the reference signal does not 

contain noise, the continuous alignment method is equivalent to the least-square method. This is the case when the 

continuous alignment method is run iteratively, using the average of the tracks aligned in the previous run as the 

reference function. The least-square method has been shown empirically, and formally in some cases, to give the 

best estimator of the parameter t, i.e. an unbiased estimator with minimum variance. 

 

Average of aligned datasets 
With the canonical discrete alignment of the datasets, a systematic error is made when averaging all the different 

datasets. Indeed, if the real offset was   , the value at position   (                 ) of the linearly 

interpolated data is: 
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Noting that 
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Noting that                    , we can now write 

                                                                            

Therefore  

                                                     

 

This shows that when aligning the datasets on the discrete sampling time points, one makes a systematic error on the 

estimation of the function, roughly equal to            .  

 

Theorem 2. The average of datasets aligned with the canonical discrete alignment method contains a 
systematic error roughly equal to 
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at position  ,                   
 

Proof: 

The average value of all the           interpolated data at position   is: 
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Theorem 3. The average of datasets aligned with the continuous alignment method at position 
  converges to the value of the original signal      
 

Proof: 

For   such as                         
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As a consequence,  

                                                  

 

Presence of noise in the measured data  
 

Corollary2. Theorem 2 and 3 are still valid in the presence of noise in the measured signal.  
 

Proof: 

Let now assume that each measurement at position   contains independent noise, noted   . We now have: 

                                   
 

                
       

         

          for                         ⁄  

 

and  

                                   
 

      
                 

         

          for                 ⁄          

 

We note 
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and                      ⁄  . Since    is uniformly distributed in             ⁄            ⁄  ,    is 

uniformly distributed in     ⁄    ⁄  . 
 

Note that         is the difference of two independent random variables and therefore its mean converges to 0. We 

now have, 
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If all the noise measurements follow the same distribution with mean 0, then for large number of datasets both sums 

will converge to 0 and  

                                                            

 

A similar property can be shown for the average of data aligned with the canonical discrete alignment method. 

 

Theorem 4. The variance of the sampled data aligned with the continuous alignment method is  

                                
 

 
   

where    is the variance of the measurement noise 
 

Proof: 
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Therefore,                                 converges to 
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        and    being independent variates, their covariance will converge to 0 for large          . 

 

In addition,         and    are independent, therefore 
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Theorem 5. The variance of the sampled data aligned with the canonical discrete alignment method is  

                              
 

 
                  

where    is the variance of the measurement noise and 
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Proof: 

We note               
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The covariance and the last sum actually converge to 0 for large          .  

 

Therefore 

                              
 

 
      (         ). 

 

In conclusion, the canonical discrete alignment misestimates the mean and the variance of the original signal. 
















