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SUPPLEMENTAL FIGURE LEGENDS

SUPPLEMENTAL FIGURE S1. Score calculation in the proof of the continuous alignment
method. Blue, reference dataset; red, dataset to align. f(x), value of the original signal at time Xx; t,
unknown offset; tofiser, Original offset between both datasets; tsampiing, time interval between two
consecutive measurements of the signal; x;, original time points where the reference dataset has

been measured; Xscorei, time points where the score function is evaluated.

SUPPLEMENTAL FIGURE S2. Interface of the PatchTrackingTools used for patch tracking
and quality control (toolbox on the right side). The specimen is a live wild type fission yeast cell
(middle left) expressing Fim1p-mEGFP. The bottom left image is the sum projection of cells
imaged with a spinning disk confocal microscope over 5 consecutive 360 nm-spaced z-slices.
The row of images at the top left shows the five consecutive z-slices for the patch in the yellow
box in the bottom left image. The bottom right image is a montage of fluorescence micrographs
generated automatically where each row corresponds to a z-slice and each column to a different
time point. This allows the user to check quickly that all the fluorescence of the patch of interest
has been collected with no other patch interfering. Images on the left part of the figure are color-
coded in function of pixel intensities using the ImageJ “Fire” lookup table (dark blue, lower
intensities; bright orange, higher intensities). The bottom right montage has reversed contrast

(white, lower intensities; black, higher intensities).

SUPPLEMENTAL FIGURE S3. (A) Timing variability for the number of molecules of fimbrin
for different patches. Each dot is the size of the horizontal gray lines in Figure 3B, i.e. represents
the standard deviation along the x-axis for the normalized number of molecules. (B) Comparison
of the quality of three alignment methods: alignment on the peak value; alignment minimizing
the variability between datasets at the sampling resolution (1 s); and continuous alignment (using
a 100 ms resolution). The points are the average and the vertical lines are the standard deviation
of the Root Mean Square Difference (RMSD) between each dataset and the averaged dataset for
the 24 tracks used in Figure 3D.
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SUPPLEMENTAL FIGURE S4. Z-test for the average displacements of endocytic patches
plotted in Figure 5B. In each figure, we perform a z-test at 95% testing the null hypothesis that
the displacement at each time point is the same significance as at a reference time point (A: 0°s;
B: 3s;C:65;D:8s, green dots on the plots; red line: threshold z-score to reject the null
hypothesis with 95% confidence). (A) The displacements between time 4 sand 8 s are
significantly different from the displacement at time 0 s. (B) The displacements between time 5 s
and 7 s are significantly different from the displacement at time 3 s. (C) The displacements
between time 0 s and 4 s are significantly different from the displacement at time 6 s. (D) The
quality of the data at time 8 s is too low to conclude that the displacement at time 8 s is

significantly different than the displacements at different time points except fort =0 s.

SUPPLEMENTAL FIGURE S5. Comparison of patches imaged at the bottom edge or in the
middle plane of the cell. The resolution in z is smaller than the resolution in x and y in confocal
microscopy. Therefore, data from patches from the middle of the cell give an accurate
description of the movement perpendicular to the membrane and data from patches from the
bottom of the cell give an accurate description of the movement parallel to the membrane. No
significant difference is found between patches tracked in the middle or at the bottom of the cell.
(A) Number of molecules; (B) Displacement; (C) Distance from origin. Olive, patches at the
bottom of the cell; teal, patches in the middle of the cell; green, all patches pooled together. Dark
colors, average values; light colors, standard deviations. Inset of (A) The relative standard

deviation in the number of molecules is on average 20%.

SUPPLEMENTAL FIGURE S6. Temporal evolution of patch distributions in cells from Figure
6. (A) Number of patches. (B) Patch distribution in cells (red, densest tip; green: middle of the
cell; blue, less dense tip). (C) Tip symmetry index. (D) OPsg index. In all panels, each subpanel
corresponds to the cell with same color in Figure 8.
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Supplemental materials
Proof of Continuous Alignment Method
Julien Berro

Let us consider 2 datasets of N4, datapoints that represent two independent measurements of the same signal
f(x) at sampling intervals tsqmpiing (Supplemental figure SLA). Consider these two samples have been measured at
an unknown offset ¢, (., from each other. The continuous alignment method aims to find this offset by minimizing
the square difference between the piecewise linear interpolation of the sampled data for different offset t. Here we
prove that the value of the offset ¢ that minimizes this score is an estimate of the original unknown offset ¢, ¢ ¢ge¢ -

We call frererence (X)), the piecewise linear interpolation of one datasets (blue curve, Supplemental figure S1) and
froaign (%, t), the piecewise linear interpolation of the other dataset, translated along the x axis with the offset t
(blue curve, Supplemental figure S1).

The score is evaluated every tsampiing at Xscore; = Xscore, T L X tsampiing (Qray arrows, Supplemental figure S1).
Let us assume without loss of generality x; + ¢ < Xgcore; < Xi41-

For the following theorem, we also assume that the signal f(x) is at least one time differentiable and that the higher
order derivatives and the sampling interval are such that f(x +t) = f(x) +t x f'(x) for 0 <t < tsampling. This
condition occurs asymptotically when tsgpping tends to 0.

Theorem 1 .The score function of the continuous alignment method
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Keeping the first differentiate only (Ngr=1) (see below)
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which is minimum (actually 0) when ¢ = t, ¢,
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Note: the continuous alignment method becomes less efficient when the original signal has large second order

derivative between 2 sampling points, that is the signal is far from

a straight line between 2 consecutive sampling

points. A higher sampling frequency (by decreasing tsqmpiing) Will therefore improve the continuous alignment.

Note also that this formula shows that the continuous alignment m

ethod gives better results for signals with large

first order derivatives. Indeed, if the first order derivative is close to 0 (typically close to a straight line parallel to the
x-axis), the continuous alignment method will not give good results, just like the regular “manual” alignment

method, as expected intuitively.

Presence of noise in the measured data

Now, let us assume that each measurement contains noise. We note ¢, the measurement noise of the reference
dataset at time x. Let assume that each measurement noise is independent from each other and is distributed around

the same distribution with same average et same variance o2.
Noting § = xcore; — Xi, WE NOW have

fReference,WithNoise(xscorei) = fRefeTence,NoNoise(xscorei) + &x;
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We will now show that the score function of the continuous alignment method is still minimum for t = t ¢, in the

presence of ‘reasonable’ noise in the measured data.

Indeed,
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sample = sampling sampling

The sum will be close to zero for large Nygmpie, SiNCe it is an estimator of the difference of the average error at x;
and at X + toffset

Since the noise measurements are independent, and since 6 /tamping < 1 (it is equal to 0 when the score is
evaluated at x;), the second term of the right-hand side is an estimator of

2,05 12
202 (1 +L“)2) ~ 202

tsampling
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2
ScoreWithNoise(t) ~ ﬁ Z ”f’(xt)(t - toffset)” + 202
sample =

Therefore, the continuous alignment method still works even in the presence of noise.

Note 1: large noise decreases the efficiency of the method, especially when the variance becomes of the same order
of magnitude as the second order term of the Taylor polynomial or when the estimation of the mean and the variance
become less accurate for small numbers of sampling points.

Note 2: in specific cases the continuous alignment method can be seen as a variant of the least-square method. In
general it is not, since both signals to align contain independent noise. However, if the reference signal does not
contain noise, the continuous alignment method is equivalent to the least-square method. This is the case when the
continuous alignment method is run iteratively, using the average of the tracks aligned in the previous run as the
reference function. The least-square method has been shown empirically, and formally in some cases, to give the
best estimator of the parameter t, i.e. an unbiased estimator with minimum variance.

Average of aligned datasets

With the canonical discrete alignment of the datasets, a systematic error is made when averaging all the different
datasets. Indeed, if the real offset was t,, the value at position x (x; < x < x; + tsampiing) Of the linearly
interpolated data is:

f(xi + tk + tsampling) - f(xi + tk)

tsamp ling

fpiscreteatignment () =fl +t) + (x—x)
f(xi+tk+tsampling)_f(xi"'tk)

tsampling

fDiscreteAlignment (x) = f(xi + tk) + f’(xi + tk)(x - xi) + O(tsampling)

Noting that

=f'0g+t)+ O(tsampling) and (x —x;) = O(tsampling) , We can write

Noting that (x — x;) = (x — x; — t3) + t;, We can now write
fDiscreteAlignment(x) = f(xi + tk) + f’(xi + tk)(x —Xi — tk) + f’(xi + tk)tk + O(tsampling)
Therefore
fDiscreteAlignment () =f0)+ f'(x; +t)te + O(tsampling)

This shows that when aligning the datasets on the discrete sampling time points, one makes a systematic error on the
estimation of the function, roughly equal to f'(x; + t;)t,.

Theorem 2. The average of datasets aligned with the canonical discrete alignment method contains a

systematic error roughly equal to
Npatasets

PRI

k=1

1

N Datasets



at position x, x; < X < X; + tsampling

Proof:
The average value of all the Np,;qsets iNterpolated data at position x is:

1 Npatasets
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Theorem 3. The average of datasets aligned with the continuous alignment method at position
X converges to the value of the original signal f (x)

Proof:
For x such as x; + ty < x < x; + tyx + tsampiing

X+t +t ing) — F O + ty)
f( i k samplmg) f i k (x —x — tk)
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fContinuousAlignment x) = fQ+t) +

= f(X) + O(tsampling)

As a consequence,
AverageContinuousAlignment(x) = f(x) + O(tsampling)

Presence of noise in the measured data
Corollary2. Theorem 2 and 3 are still valid in the presence of noise in the measured signal.

Proof:
Let now assume that each measurement at position x contains independent noise, noted &,. We now have:

~ Exi+fk+tsampling_£xi+tk
fContinuousAlignment (x) ~ f(x) + gxi+tk + (x —Xi — tk) for Xi + tk =x< Xi + tk + tsampling/z
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uniformly distributed in ] — 1/2,1/2].

Note that A, (x, k) is the difference of two independent random variables and therefore its mean converges to 0. We
now have,



AverageContinuous_WithNoise (x)
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Exitty LT a— Z As(xJ k)T
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= AverageContinuous_NoNoise (x) + N
Datasets

If all the noise measurements follow the same distribution with mean 0, then for large number of datasets both sums
will converge to 0 and

AverageContinuous_WithNoise (x) ~ AverageContinuous_NoNoise (x)

A similar property can be shown for the average of data aligned with the canonical discrete alignment method.

Theorem 4. The variance of the sampled data aligned with the continuous alignment method is

, - 2
VananceContinuous_WithNoise (x) ~ g o

where ¢ is the variance of the measurement noise

Proof:
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In addition, A.(x, k) and t,, are independent, therefore
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And Variancecontinuous withNoise x) = gO’

Theorem 5. The variance of the sampled data aligned with the canonical discrete alignment method is
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Variancepiscrete withnoise(X) = 80'2 + var(f'(x; + £)t)

where o is the variance of the measurement noise and
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The covariance and the last sum actually converge to 0 for large Npgrasets-

Therefore

, 7 ’,
VananceDiscrete_WithNoise (X) = EO-Z + var(f (xi + t)t)-

In conclusion, the canonical discrete alignment misestimates the mean and the variance of the original signal.
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