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Supplementary Figure 1: Empirical type I error rate and power for population structure but no 
family relatedness with purely synthetic data. Each point represents the empirical type I error rate 
or power across 360 data sets with varying numbers of causal SNPs and with different degrees of 
signal (narrow-sense heritability) and population structure.



Supplementary Figure 2: Empirical type I error rate and power for population structure but no 
family relatedness with purely synthetic data. Each point represents the empirical type I error rate 
or power across 72 data sets with different degrees of signal (narrow-sense heritability) and 
population structure. 



Supplementary Figure 3: Empirical type I error rate and power for population structure but no 
family relatedness, with and without a direct correlation between confounding structure and 
the phenotype. Each point represents the empirical type I error rate or power across 360 data sets 
with varying numbers of causal SNPs and with different numbers of causal SNPs and different 
degrees of signal (narrow-sense heritability) and population structure. The plots labeled “no direct 
correlation” and “direct correlation” correspond to the generating processes in Figures 3a and 3b, 
respectively.



Supplementary Figure 4: Empirical type I error rate and power for family relatedness but no 
population structure with purely synthetic data. Each point represents the empirical type I error 
rate or power across 90 data sets with different degrees of signal (narrow-sense heritability) and 
family relatedness. 



Supplementary Figure 5: Empirical type I error rate and power for family relatedness but no 
population structure, with and without a direct correlation between confounding structure and 
the phenotype. Each point represents the empirical type I error rate or power across 450 data sets 
with varying numbers of causal SNPs and with different numbers of causal SNPs and different 
degrees of signal (narrow-sense heritability) and family relatedness. The plots labeled “no direct 
correlation” and “direct correlation” correspond to the generating processes in Figures 3a and 3b, 
respectively.



Supplementary Figure 6: Empirical type I error rate and power for both family relatedness and 
population structure with purely synthetic data. Each point represents the empirical type I error 
rate or power across 360 data sets with different degrees of signal (narrow-sense heritability), 
population structure, and family relatedness.



Supplementary Figure 7: Control of type I error and power for phenotypes synthetically 
generated from  SNPs from the Finnish data. Each point represents empirical type I error rate or 
power across 400 synthetic phenotypes. 



Supplementary Figure 8: Control of type I error and power for phenotypes synthetically 
generated from SNPs from the VAS data. Each point represents empirical type I error rate or power
across 400 synthetic phenotypes. 



Supplementary Figure 9: Control of type I error and power for phenotypes synthetically 
generated from  SNPs from the Mouse data. Each point represents empirical type I error rate or 
power across 4,000 synthetic phenotypes. 



Supplementary Figure 10: Control of type I error for phenotypes synthetically generated from 
SNPs from the Mouse data with 10 causal SNPs. Causal SNPs from one chromosome are either 
included or excluded from the GSM. Each point represents empirical type I error rate or power across 
4,000 synthetic phenotypes.



Supplementary Table 1: Statistics for the analysis of real phenotypes from the Finnish and 
VAS data. The first column is the number of SNPs selected. The second column is the number of 
PCs after estimation. The remaining columns summarize GWAS performance based on the bronze 
standard (number of false positive and true positive loci under two different significance thresholds). 

# SNPs # PCs FP 5x10-8 TP 5x10-8 FP 5x10-7 TP 5x10-7

Finnish LDL
Linreg - - 0 6 0 6
LMM(all) 328517 - 0 6 0 7
LMM(select)+PCs 32 13 0 6 0 7
LMM(all+select) 16 - 0 6 0 6

Finnish HDL
Linreg - - 0 3 0 5
LMM(all) 328517 - 0 4 0 5
LMM(select)+PCs 16 13 0 3 0 4
LMM(all+select) 16 - 0 3 0 5

Finnish Triglyceride
Linreg - - 0 2 0 2
LMM(all) 328517 - 0 2 0 2
LMM(select)+PCs 4 13 0 2 0 2
LMM(all+select) 2 - 0 2 0 2

AVS BMI
Linreg - - 0 0 1 0
LMM(all) 720036 - 0 0 1 0
LMM(select)+PCs 720036 10 0 0 1 0
LMM(all+select) 4 - 0 0 2 0



A comparison of two methods for estimating PCs 

We considered two methods for estimating PCs. The first method estimated PCs guided by the 

accuracy of phenotype prediction, similar to the approach of refs1,2 for estimating PCs in combination 

with linear and logistic regression. In particular, the method tried increasing numbers of PCs 

associated with decreasing explained genetic variation (eigenvalues of the matrix of all SNPs), 

identifying the number of PCs that maximized the out-of-sample predictive accuracy on the phenotype. 

The method is called PCpheno (PC estimation based on phenotype) and, for the most complicated 

case where SNPs are also selected, was as follows: 

1. Create random train-test partitions of the data samples. 

2. For numPCs = 0 

a. For each partition 

i. Use the training data to compute univariate linear-regression association P 

values on each SNP using the PCs as covariates. 

ii. Order the SNPs by increasing P value. 

iii. For numSNPs in {0, 1, 2, 4, …, 8192, all} (the default values), use the first 

numSNPs of SNPs in the ordering as features for the LMM: 

1. Optimize the parameters of the LMM including  using REML. 

2. Use the LMM to compute the predictive log likelihood of the test data. 

3. Repeat step 2 with increasing numPCs until either (1) the predictive log likelihood of the test 

data maximized over numSNPs decreases twice in a row or (2) this log likelihood first 

increases and the decreases below the starting value. (These are the default values.) 

4. Choose the value of numPCs and numSNPs that maximize jointly the sum over the partitions 

of the predictive log likelihood of the test data. 

In the second method, the estimation of PCs was guided by the prediction accuracy of PCs on SNPs 

rather than the phenotype. In particular, we selected PCs by how well a corresponding probabilistic 

principal components analysis (PPCA) model (see next section and ref.3) maximized the predictive 

likelihood out-of-sample. The PPCA model captured statistical dependencies among the SNPs using 

a latent factor model, and included parameters that correspond to principal components. The method, 

called PCgeno (PC estimation based on genotype), was as follows: 

1. Remove individuals that are closely related. Our default removes individuals until no two 

individuals have an estimated kinship coefficient from a GSM computed from all genome-wide 

SNPs of less than 0.1. 

2. In the PPCA model, one dimension of the matrix of SNPs indexes multivariate samples, while 

the other indexes variables of the samples. To avoid problems due to the high dimensionality 

of the SNPs of each individual, treat the SNPs as samples and the individuals as variables. 

3. Partition the samples into subsamples for cross-validation. Partition SNPs across 

chromosomes to reduce correlation between the partitions. When evaluating prediction 



accuracy for a given subsample, the subsample is used for testing, while the other 

subsamples are used for training. Each train-and-test constitutes a fold. 

4. For numPCs = 0 

a. For each fold 

i. Use the training data to compute maximum likelihood estimates for a PPCA 

model. 

ii. Compute the log likelihood of the test data according to this model. 

5. Repeat step 4 with increasing numPCs until either (1) the sum over the folds of log likelihood 

decreases twice in a row or (2) this sum first increases and the decreases below the starting 

value. 

6. Select the PPCA model that maximizes the sum over the folds of the log likelihood. 

7. Project the individuals who were removed in step 1 onto the subspace defined by the optimal 

PPCA model (see next section). 

In this method, we used cross-validation rather than random train-test partitions. By using cross-

validation and partitioning by chromosome (in step 3), independence between train and test sets was 

maximized. 

Note that PCgeno determines PCs separately from the process of SNP selection. That is, PCgeno is 

used first to determine the PCs, and then given these PCs, a SNP selection algorithm is applied using 

the PCs as covariates. In contrast, PCpheno requires an integrated approach to PC estimation and 

SNP selection. The computation of PCs (in either PCpheno or PCgeno) has complexity O(N2M) in the 

simple case where all N PCs are computed.  

On experiments with Linreg and LMM(SelectPheno) applied to SNPs having population structure but 

no family relatedness (generated as described in the main text), PCgeno outperformed PCpheno 

(Supplemental Figure 11).  

The difference in performance between PCpheno and PCgeno on LMM(SelectPheno) can be 

understood in terms of the graphical model structure in Figure 3a of the main text. First, note that the 

portion of the graphical-model structure for SNP generation by the Balding-Nichols model—Figure 3a 

with y omitted—is identical to that for PPCA with one PC. Consequently, using one PC as a fixed 

effect is almost equivalent to conditioning on l, which would block paths from non-causal SNPs to y, 

leading to control of type I error. Now, when SNP selection was used, only weak paths from l to y 

remained, because most causal SNPs are conditioned on. Consequently, the PCpheno algorithm, 

which was guided by correlations between l and y, may have erroneously selected the wrong number 

of PCs (usually 0 in our experiments) and thus produced open paths from the non-causal SNPs to y. 

This hypothesis was validated by the results for Linreg. Namely, when we ran the PCpheno algorithm 

for Linreg (forcing numSNPs=0 in step 2c of the algorithm), there were stronger paths from l to y. As a 

result, the algorithm picked one PC across all data sets, resulting in good control of type I error.  

 



PC estimation guided by the SNPs rather than the phenotype was not impacted by weak paths from l 

to y. Rather, the algorithm was able to recognize that a single latent variable could account for the 

correlations among the SNPs. Indeed, in our experiments, PCgeno always picked one PC. 

  



Supplementary Figure 11: Empirical type I error rate and power for population structure but no
family relatedness with purely synthetic data. Each point represents the empirical type I error rate 
or power across multiple data sets with different degrees of signal (narrow-sense heritability) and 
population structure.



The probabilistic principal components model 

In the probabilistic principal components (PPC) model, each 𝐷 dimensional sample is given by the 

linear model 𝑥𝑖 = 𝜇 +  𝑢𝑖𝑉𝑇 + 𝜖𝑖 , where 𝜇 is a 𝐷 dimensional mean vector, 𝑢𝑖 is the 𝑘 dimensional 

vector of principal components (PCs), the 𝑘 times 𝐷 matrix 𝑉𝑇 are linear regression weights, also 

called loadings, and 𝜖𝑖 is a 𝐷 dimensional noise vector. The principal components and the noise 

follow independent normal distributions: 

𝑢𝑖 ∼ 𝑁(0;Λ
𝑘

) 

𝜖𝑖 ∼ 𝑁(0; 𝜎2𝐼𝐷), 

where Λ
𝑘
 is a diagonal matrix and 𝐼 is the identity matrix. The marginal likelihood follows from 

integrating out the PCs as well as the noise: 

 

∏ ∫ 𝑁(𝑥𝑖|𝜇 + 𝑢𝑖𝑉𝑇 ; 𝜎2𝐼𝐷)

𝑖

𝑁(𝑢𝑖|0;Λ
𝑘

)𝑑𝑢𝑖 

= ∏ 𝑁(𝑥𝑖|𝜇; 𝑉Λ𝑉𝑇 + 𝜎2𝐼𝐷)𝑖 . 

The maximum likelihood values for the parameters 𝑉,Λ, 𝜇, 𝜎2 can be obtained from the singular value 

decomposition of the training data
3
. 

 

In the PC estimation method PCgeno, we estimate the parameters of the PPC model using a data set 

of non-closely related individuals and then project the remaining individuals onto the estimated PCs. 

To obtain the projection 𝑢∗ for a new sample 𝑥∗, we maximize the likelihood of 𝑥∗ with respect to 𝑢∗ 

under the PPC model: 

log 𝑁(𝑥∗|𝜇 + 𝑢∗𝑉𝑇 ; 𝜎2𝐼𝐷) = log 𝑁(𝑥∗ − 𝜇|𝑢∗𝑉𝑇 ; 𝜎2𝐼𝐷). 

The likelihood of 𝑥𝑖 is maximized by the least squares estimator for 𝑢𝑖 : 

𝑢̂𝑖 = (𝑥𝑖 − 𝜇)(𝑉𝑇𝑉)−1𝑉𝑇 

Thus, if the singular value decomposition 𝑋 = 𝑈Λ𝑉𝑇 is used to estimate 𝑉 and Λ, then the columns 

of 𝑉 are orthogonal, such that 𝑉𝑇𝑉 = 𝐼𝑘; and it follows that 

𝑢̂𝑖 = (𝑥𝑖 − 𝜇)𝑉𝑇, 

𝑋 = 𝑈𝑉. 
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