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SomaticSniper Supplementary Materials

Supplementary Methods — Variant Calling Methods

Two independent variant callers, Strelka' and SomaticSniperZ, were evaluated. The main analysis
performed using results from Strelka, which has greater sensitivity and ability to detect subclonal mutations, by
minimizing reporting of spurious variants and germline polymorphisms3. Additionally, the SomaticSniper methods
and results are reported below.

Before running SomaticSniper, all DNA sequencing BAM files were realigned using the Genome Analysis
Toolkit (GATK) Indel Realigner program *. In addition to default parameters, the knownAlleles parameter was
used with the well-documented insertions/deletions (indels) files: Mills_and_1000G_gold_standard.
indels.b37.sites.vcf ® and 1000G_phasel.indels.b37.vcf ® available through the bioinformatic resource
Galaxy 78 SomaticSniper data was then post-processed to only include variants with both mapping and somatic

qualities of at least 40 (equivalent to running it with -Q 40 -q 40).

Supplementary Results — SomaticSniper Variant Calling Results

SomaticSniper variant predictions are summarized in Table 1. Notably, there were 1,208 variants from
SomaticSniper that are predicted to affect both protein coding and splicing 594 genes. In the SomaticSniper data,
mutations classified as both protein coding and splicing variants were found in 383 tumours, with 63 of these
variants in PASD1, 61 in PRSS3, 52 in NF1. The variants in these genes, as well as others that were highly
mutated, are the exact same genomic location and nucleotide change, suggesting that SomaticSniper reported
higher numbers of SNPs® that were not annotated with dbSNP135 in >1% of the population, which was used to
filter out common SNPs. There were 248 variants in 186 tumours from the SomaticSniper set that were classified
as silent amino acid changes from ANNOVAR, but were revealed to affect splicing from the Shannon Pipeline
predictions.

There was relatively low concordance between the two variant callers, which reported variant lists with
less than 50% similarity. There were 21,112 protein coding and 1,811 splicing variants common to both Strelka
and SomaticSniper. The predicted variants were compared to the previously reported TCGA Level 2 somatic
mutations (Table 2). Strelka showed the highest concordance with TCGA mutations, reporting 82.1% of protein
coding mutations, and 86.5% of the splicing variants. Conversely, SomaticSniper predicted 73.4% protein coding

and 75.3% splicing variants reported by TCGA.



Both of the somatic variant callers we employed utilize Baysian methods to elucidate somatic event
probabilities. Strelka and SomaticSniper were found to be the two best variant callers in a comparison by Roberts
et al 2013. Additionally, these two are a valuable combination, in that SomaticSniper is useful to generate “a
variety of candidate SNV sites without any particular drawbacks”, although with a fair amount of false positives,
while Strelka is least prone to returning germ-line polymorphisms. The relative stringency of Strelka was our main
reason for performing most of our analyses with it, along with the fact that many of its candidates (at probability
0.2) were also returned by other callers. It is worth mentioning that different callers have been found to have poor
correlations at the same sites; in particular, Strelka and SomaticSniper were found to have a 0.21 Pearson
correlation coefficient in the abovementioned study. Our use of Veridical to validate splicing variants with
functional evidence of the mutation significantly resolves the inconsistency between somatic variant callers (for
this type of mutation).

Supplementary Data 1 | Variant Summaries by Mutation Type
SomaticSniper

ANNOVAR protein coding variants software
Synonymous 23,458
Nonsynonymous 52,634
Stop gain or loss 2,127
Total protein coding variants 78,219
Shannon Pipeline splicing variants
Cryptic 6,441
Inactivating 2,685
Leaky 10,648
Total splicing variants 19,774
Synonymous 248
Nonsynonymous 905
Stop gain or loss 55
Total 1,208
% Synonymous also splicing 1.0572%
% Nonsynonymous also splicing 1.7194%
% Stop gain or loss also splicing 2.5858%

Supplementary Data 2 | SomaticSniper Variants compared to TCGA Findings
TCGA predicted by

TCGA Protein Coding Variants Total TCGA SomaticSniper
SNVs Validated 5,657 4,365 (77.3%)
SNVs Not Validated 18,197 13,380 (72.2%)
Indels Validated 125 N/A
Indels Not Validated 1,758 N/A
Total 25,637 17,745 (73.4%)
TCGA Splicing Variants

SNVs Validated 87 70 (80.5%)
SNVs Not Validated 342 253 (74.0%)
Total 429 323 (75.3%)



Supplementary Figure S1. RNA-Seq Coverage Heat Map by Subtype. Heatmap depicting coverage per exonic
base of TCGA RNA-Seq tumour and normal data. Expression based on RNA-Seq datasets is shown along the x-
axis, with tumours first, ordered by subtype, followed by matched normal breast tissues. These categories are
demarcated within the heatmap by black vertical lines, which correspond to the sample types: (A) basal-like; (B)
HER2-enriched; (C) luminal A; (D) luminal B; (E) tumour, subtype not available; (F) normal-like tumor; and (G)
normal control samples. The y-axis consists of all RefSeq genes (with major and minor tick marks every 5,000
and 1,000 genes, respectively), clustered to form a dendrogram, which is visible on the left side of the graph.
Genes will low nominal expression levels were below minimum threshold read counts for analysis by Veridical.
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Supplementary Figure S2. Information theory based analysis and corresponding evidence demonstrating
abnormal mRNA splicing in predicted mRNA splicing mutations. (A) Table indicates the TCGA sample
identifier, variant, information analysis and statistical support for the mutation. (B) Screenshots from the
Integrative Genomics Viewer (IGV) displaying junction-spanning reads that demonstrate cryptic splicing for
mutations predicted by the Shannon Pipeline in the genes CBFB, GATA3, PALB2, and ABL1. The normal exonic
structure is indicated by blue, with the thick bars representing exons, and the thin lines introns. RNA-Seq reads
are shown in grey with the vertical dotted black lines demarcate the location of the cryptic splice site.
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Supplementary Figure S3. Junction-spanning, cryptic splicing read counts for GATA3 mutation (chr10:
g.8115702A>C). The number of RNA-Seq reads per exonic base were plotted against the number of reads
demonstrating GATAS3 cryptic splicing in the variant-containing tumours and controls. The variant containing
tumour is indicated by the number of cryptic splicing reads (n = 791), tumours that do not contain this variant are
in red, and normal controls are in blue. Cryptic splicing in the control samples likely occurs because the cryptic
splice site (Ri = 4.2 bits) exceeds the strength of the natural splice site (Ri = 0.9 bits). However, the mutation
further weakens the natural splice site (final Ri = 0.0 bits), while simultaneously strengthening the cryptic splice
site (final Ri = 5.8 bits), which consistent with the RNA-Seq analysis.
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Supplementary Figure S4. Intron Inclusion in tumour and normal breast genomes, based on RNA-Seq
evidence. Histogram of the density of intronic sequence reads for normal (blue) and tumour (red) RNA-Seq
samples. Purple shading represents overlapping components of the two density distributions. Intron inclusion
was calculated with RSeQC's ReadDist script and RefSeq’s gene annotation.

High levels of unspliced isoforms with intron inclusion were the most frequent outcome of mutations with
significant effects on mRNA splicing. Nevertheless, when considering non-specific aberrant splicing across the
transcriptome, the numbers of junction-spanning, intron inclusion reads present in normal and tumour samples did
not significantly differ (p > 0.1). In fact, non-junction-spanning, intronic read-abundance reads of normal controls
exceeded those of the tumour samples (p < 0.01; Supplementary Figure 4). This suggests that validation events
in these tumour samples are not due solely to intron inclusion and aberrant mMRNA splicing known to be present in
breast tumours®. It is notable, however, that the levels of intronic inclusion for validated mutations significantly
exceeded the read counts for all controls that did not contain these variants.
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Supplementary Figure S5. Word Clouds of Overrepresented Pathways by Subtype. Word Clouds of
overrepresented Reactome pathways for mutations in breast tumours, stratified by lymph node status (positive or
negative) and by breast cancer subtype (basal-like, HER2-enriched, Luminal A, or Luminal B). The size of each
word is proportional to its frequency in the abstracted list of overrepresented pathways.
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HERZ2-enriched lymph node positive
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Supplementary Figure S6

TCGA
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Supplementary Figure S6. Flowchart indicating
procedure for filtering splicing mutation variants.
Shannon pipeline splicing variants output was filtered using
the steps shown in this flowchart to identify those variants
that are likely to cause aberrant splicing. Upon identifying
variants with Strelka (or Somatic Sniper), the VCF files were
submitted to the Shannon splicing mutation pipeline, then
categorized as either mutations affecting natural splice sites
(3’ acceptor, or 5’ donor) or cryptic splice site strengths. In a
smal number of cases, both natural and cryptic splice sites
were simultaneously altered. Natural sites that were predicted
to be abolished were further considered. Predicted leaky
splicing mutations were excluded from the present analysis,
since the validation methods for such mutations has not yet
been assessed. Aside from standard information theory-
based mutation criteria, cryptic splicing mutation candidates
were also filtered for proximity to the nearest neighboring
natural splice site and population frequency. The filtered
variant subset (n = 5,206) was used for all subsequent
analyses.
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