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SomaticSniper Supplementary Materials  
 
Supplementary Methods – Variant Calling Methods 

Two independent variant callers, Strelka1 and SomaticSniper2, were evaluated. The main analysis 

performed using results from Strelka, which has greater sensitivity and ability to detect subclonal mutations, by 

minimizing reporting of spurious variants and germline polymorphisms3. Additionally, the SomaticSniper methods 

and results are reported below.  

Before running SomaticSniper, all DNA sequencing BAM files were realigned using the Genome Analysis 

Toolkit (GATK) Indel Realigner program 4. In addition to default parameters, the knownAlleles parameter was 

used with the well-documented insertions/deletions (indels) files: Mills_and_1000G_gold_standard.	  

indels.b37.sites.vcf 5 and 1000G_phase1.indels.b37.vcf 6, available through the bioinformatic resource 

Galaxy 7, 8. SomaticSniper data was then post-processed to only include variants with both mapping and somatic 

qualities of at least 40 (equivalent to running it with  -‐Q	  40	  -‐q	  40). 

 

Supplementary Results – SomaticSniper Variant Calling Results 

SomaticSniper variant predictions are summarized in Table 1. Notably, there were 1,208 variants from 

SomaticSniper that are predicted to affect both protein coding and splicing 594 genes. In the SomaticSniper data, 

mutations classified as both protein coding and splicing variants were found in 383 tumours, with 63 of these 

variants in PASD1, 61 in PRSS3, 52 in NF1. The variants in these genes, as well as others that were highly 

mutated, are the exact same genomic location and nucleotide change, suggesting that SomaticSniper reported 

higher numbers of SNPs3 that were not annotated with dbSNP135 in >1% of the population, which was used to 

filter out common SNPs. There were 248 variants in 186 tumours from the SomaticSniper set that were classified 

as silent amino acid changes from ANNOVAR, but were revealed to affect splicing from the Shannon Pipeline 

predictions. 

There was relatively low concordance between the two variant callers, which reported variant lists with 

less than 50% similarity. There were 21,112 protein coding and 1,811 splicing variants common to both Strelka 

and SomaticSniper. The predicted variants were compared to the previously reported TCGA Level 2 somatic 

mutations (Table 2). Strelka showed the highest concordance with TCGA mutations, reporting 82.1% of protein 

coding mutations, and 86.5% of the splicing variants. Conversely, SomaticSniper predicted 73.4% protein coding 

and 75.3% splicing variants reported by TCGA. 
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Both of the somatic variant callers we employed utilize Baysian methods to elucidate somatic event 

probabilities. Strelka and SomaticSniper were found to be the two best variant callers in a comparison by Roberts 

et al 2013. Additionally, these two are a valuable combination, in that SomaticSniper is useful to generate “a 

variety of candidate SNV sites without any particular drawbacks”, although with a fair amount of false positives, 

while Strelka is least prone to returning germ-line polymorphisms. The relative stringency of Strelka was our main 

reason for performing most of our analyses with it, along with the fact that many of its candidates (at probability 

0.2) were also returned by other callers. It is worth mentioning that different callers have been found to have poor 

correlations at the same sites; in particular, Strelka and SomaticSniper were found to have a 0.21 Pearson 

correlation coefficient in the abovementioned study. Our use of Veridical to validate splicing variants with 

functional evidence of the mutation significantly resolves the inconsistency between somatic variant callers (for 

this type of mutation).  

Supplementary Data 1 | Variant Summaries by Mutation Type 

ANNOVAR protein coding variants 
SomaticSniper 

software 
Synonymous 23,458 
Nonsynonymous 52,634 
Stop gain or loss 2,127 
Total protein coding variants 78,219 
Shannon Pipeline splicing variants  
Cryptic 6,441 
Inactivating  2,685 
Leaky 10,648 
Total splicing variants 19,774 
Synonymous 248 
Nonsynonymous 905 
Stop gain or loss 55 
Total 1,208 

% Synonymous also splicing 1.0572% 
% Nonsynonymous also splicing 1.7194% 
% Stop gain or loss also splicing 2.5858% 

 
 
Supplementary Data 2 | SomaticSniper Variants compared to TCGA Findings  

TCGA Protein Coding Variants 
Total TCGA TCGA predicted by 

SomaticSniper 
SNVs Validated 5,557 4,365 (77.3%) 
SNVs Not Validated 18,197 13,380 (72.2%) 
Indels Validated 125 N/A 
Indels Not Validated 1,758 N/A 
Total 25,637 17,745 (73.4%) 
TCGA Splicing Variants   
SNVs Validated 87 70 (80.5%) 
SNVs Not Validated 342 253 (74.0%) 
Total 429 323 (75.3%) 
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Supplementary Figure S1. RNA-Seq Coverage Heat Map by Subtype. Heatmap depicting coverage per exonic 
base of TCGA RNA-Seq tumour and normal data. Expression based on RNA-Seq datasets is shown along the x-
axis, with tumours first, ordered by subtype, followed by matched normal breast tissues. These categories are 
demarcated within the heatmap by black vertical lines, which correspond to the sample types: (A) basal-like; (B) 
HER2-enriched; (C) luminal A; (D) luminal B; (E) tumour, subtype not available; (F) normal-like tumor; and (G) 
normal control samples. The y-axis consists of all RefSeq genes (with major and minor tick marks every 5,000 
and 1,000 genes, respectively), clustered to form a dendrogram, which is visible on the left side of the graph. 
Genes will low nominal expression levels were below minimum threshold read counts for analysis by Veridical. 
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Supplementary Figure S2. Information theory based analysis and corresponding evidence demonstrating 
abnormal mRNA splicing in predicted mRNA splicing mutations. (A) Table indicates the TCGA sample 
identifier, variant, information analysis and statistical support for the mutation. (B) Screenshots from the 
Integrative Genomics Viewer (IGV) displaying junction-spanning reads that demonstrate cryptic splicing for 
mutations predicted by the Shannon Pipeline in the genes CBFB, GATA3, PALB2, and ABL1. The normal exonic 
structure is indicated by blue, with the thick bars representing exons, and the thin lines introns. RNA-Seq reads 
are shown in grey with the vertical dotted black lines demarcate the location of the cryptic splice site.  
 
(A) 

Sample Gene Splice Site 
Coordinate Variant Coordinate Ref/ 

Var 
Ri -

initial 
Ri -

final ΔRi Cryptic Site 
Use P-Value 

Exon Skipping 
P-Value 

TCGA-A8-A08S CBFB chr16:67070591 chr16:67070577 G/T 5.6 7.5 1.9 < 0.005 0.12 

TCGA-B6-A0I5 GATA3 chr10:8115709 chr10:8115702 A/C 4.2 5.9 1.7 < 0.005 NA 

TCGA-B6-A0RT PALB2 chr16:23637694 chr16:23637710 T/A 5.3 7.0 1.7 < 0.005 0.05 

TCGA-B6-A0RV ABL1 chr9:133750256 chr9:133750254 G/C 0.8 9.6 8.8 < 0.005 NA 
 

(B) 
CBFB 

 
GATA3 
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PALB2 
 

 
 
ABL1 
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Supplementary Figure S3. Junction-spanning, cryptic splicing read counts for GATA3 mutation (chr10: 
g.8115702A>C). The number of RNA-Seq reads per exonic base were plotted against the number of reads 
demonstrating GATA3 cryptic splicing in the variant-containing tumours and controls. The variant containing 
tumour is indicated by the number of cryptic splicing reads (n = 791), tumours that do not contain this variant are 
in red, and normal controls are in blue. Cryptic splicing in the control samples likely occurs because the cryptic 
splice site (Ri = 4.2 bits) exceeds the strength of the natural splice site (Ri = 0.9 bits). However, the mutation 
further weakens the natural splice site (final Ri = 0.0 bits), while simultaneously strengthening the cryptic splice 
site (final Ri = 5.8 bits), which consistent with the RNA-Seq analysis. 
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Supplementary Figure S4.  Intron Inclusion in tumour and normal breast genomes, based on RNA-Seq 
evidence. Histogram of the density of intronic sequence reads for normal (blue) and tumour (red) RNA-Seq 
samples. Purple shading represents overlapping components of the two density distributions.  Intron inclusion 
was calculated with RSeQC's ReadDist script and RefSeq’s gene annotation.  
 
High levels of unspliced isoforms with intron inclusion were the most frequent outcome of mutations with 
significant effects on mRNA splicing. Nevertheless, when considering non-specific aberrant splicing across the 
transcriptome, the numbers of junction-spanning, intron inclusion reads present in normal and tumour samples did 
not significantly differ (p > 0.1).  In fact, non-junction-spanning, intronic read-abundance reads of normal controls 
exceeded those of the tumour samples (p < 0.01; Supplementary Figure 4). This suggests that validation events 
in these tumour samples are not due solely to intron inclusion and aberrant mRNA splicing known to be present in 
breast tumours9.  It is notable, however, that the levels of intronic inclusion for validated mutations significantly 
exceeded the read counts for all controls that did not contain these variants.  
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Supplementary Figure S5. Word Clouds of Overrepresented Pathways by Subtype. Word Clouds of 
overrepresented Reactome pathways for mutations in breast tumours, stratified by lymph node status (positive or 
negative) and by breast cancer subtype (basal-like, HER2-enriched, Luminal A, or Luminal B). The size of each 
word is proportional to its frequency in the abstracted list of overrepresented pathways. 
 
Basal-like lymph node positive 
 

 
 
Basal-like lymph node negative 
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HER2-enriched lymph node positive 
 

 
 
HER2-enriched lymph node negative 
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Luminal A lymph node positive 

 
 
Luminal A lymph node negative 
 

 
 
 



	   12 

Luminal B lymph node positive 

 
 
Luminal B lymph node negative 
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Supplementary Figure S6 

 
Supplementary Figure S6. Flowchart indicating 
procedure for filtering splicing mutation variants. 
Shannon pipeline splicing variants output was filtered using 
the steps shown in this flowchart to identify those variants 
that are likely to cause aberrant splicing. Upon identifying 
variants with Strelka (or Somatic Sniper), the VCF files were 
submitted to the Shannon splicing mutation pipeline, then 
categorized as either mutations affecting natural splice sites 
(3’ acceptor, or 5’ donor) or cryptic splice site strengths. In a 
smal number of cases, both natural and cryptic splice sites 
were simultaneously altered. Natural sites that were predicted 
to be abolished were further considered. Predicted leaky 
splicing mutations were excluded from the present analysis, 
since the validation methods for such mutations has not yet 
been assessed. Aside from standard information theory-
based mutation criteria, cryptic splicing mutation candidates 
were also filtered for proximity to the nearest neighboring 
natural splice site and population frequency. The filtered 
variant subset (n = 5,206) was used for all subsequent 
analyses. 
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