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1 Simulation Study of Methods for Constructing Confidence Sets

Here we present a simulation study to provide an empirical evaluation of the confidence intervals

discussed in Section 4 of the paper Dynamic Treatment Regimes; the results are compiled from

Laber et al. [1] and Chakraborty et al. [2]. Nine generative models [3, 1], each having two

stages of treatment and two treatments per stage, are used; they can be generically described

as: Oj ∈ {−1, 1}, Aj ∈ {−1, 1} for j = 1, 2; P (Aj = 1) = 0.5 for j = 1, 2; P (O1 = 1) = 0.5,

P (O2 = 1|O1, A1) = expit(δ1O1 + δ2A1); Y1 ≡ 0; Y2 = γ1+γ2O1+γ3A1+γ4O1A1+γ5A2+γ6O2A2+

γ7A1A2 + ε, where ε ∼ N (0, 1) and expit(x) = ex/(1 + ex). The degree of non-regularity in these

models are measured by the following two quantities: (i) p = P [γ5A2 +γ6O2A2 +γ7A1A2 = 0], and

(ii) φ = E(γ5 + γ6O2 + γ7A1)/
√

Var(γ5 + γ6O2 + γ7A1).

Table 1: Parameters indexing the example models.

Example γT δT Type Non-regularity Measures

1 (0, 0, 0, 0, 0, 0, 0) (0.5, 0.5) non-regular p = 1 φ = 0/0
2 (0, 0, 0, 0, 0.01, 0, 0) (0.5, 0.5) near-non-regular p = 0 φ =∞
3 (0, 0,−0.5, 0, 0.5, 0, 0.5) (0.5, 0.5) non-regular p = 1/2 φ = 1.0
4 (0, 0,−0.5, 0, 0.5, 0, 0.49) (0.5, 0.5) near-non-regular p = 0 φ = 1.02
5 (0, 0,−0.5, 0, 1.0, 0.5, 0.5) (1.0, 0.0) non-regular p = 1/4 φ = 1.41
6 (0, 0,−0.5, 0, 0.25, 0.5, 0.5) (0.1, 0.1) regular p = 0 φ = 0.35
7 (0, 0,−0.25, 0, 0.75, 0.5, 0.5) (0.1, 0.1) regular p = 0 φ = 1.035
8 (0, 0, 0, 0, 0.25, 0, 0.25) (0, 0) non-regular p = 1/2 φ = 1.00
9 (0, 0, 0, 0, 0.25, 0, 0.24) (0, 0) near-non-regular p = 0 φ = 1.03

Table 1 provides the parameter settings; they are described as “non-regular,” “near-non-

regular,” and “regular.” Ex 1 is a setting where there is no treatment effect for any participant at

either stage. Ex 2 is similar to Ex 1 with a very weak stage 2 treatment effect for every participant,

but it is hard to detect it given the noise level in the data. Ex 3 is a setting where there is no

stage 2 treatment effect for half the participants in the population, but a reasonably large effect

for the other half. In Ex 4, there is a very weak stage 2 treatment effect for half the participants

in the population, but a reasonably large effect for the other half (the parameters are close to

those in Ex 3). Ex 5 is a setting where there is no stage 2 treatment effect for one-fourth of the

participants, but others have a reasonably large effect. Ex 6 is a completely regular setting where



there is a reasonably large stage 2 treatment effect for every participant in the population. Ex 7

is an example of a strongly regular setting. Ex 8 is an example of a non-regular setting where the

non-regularity is strongly dependent on the stage 1 treatment. In Ex 8, for histories with A1 = 1,

there is a moderate effect of A2 at the second stage, but for histories with A1 = −1, there is no

effect of A2 at the second stage, i.e. both treatments at the second stage are equally optimal. In

Ex 9, for histories with A1 = 1, there is a moderate effect of A2, and for histories with A1 = −1,

there is a small effect of A2; this “near-non-regular” example behaves similar to Ex 8.

The Q-learning analysis models used in the simulation study are given by Q2(H2, A2;β2, ψ2) =

HT
20β2+HT

21ψ2A2, and Q1(H1, A1;β1) = HT
10β1+HT

11ψ1A1, where H20 = (1, O1, A1, O1A1)
T , H21 =

(1, O2, A1)
T , H10 = (1, O1)

T , and H11 = (1, O1)
T . Thus the models for the Q-functions are correctly

specified. For the purpose of inference, the focus lies on ψ10, the main effect parameter associated

with the stage 1 treatment A1; it can be explicitly expressed in terms of γ’s and δ’s; see Chakraborty

et al. [3] for details. Below we will present simulation results to compare the performances of five

competing methods of constructing CIs for ψ10. The comparisons are conducted using N = 1000

simulated data sets, B = 1000 bootstrap replications, and the sample size n = 300. We will be

reporting the results for centered percentile bootstrap (CPB) [4] method defined below. Let θ̂

be an estimator of θ and θ̂(b) be its bootstrap version. Then the 100(1 − α)% CPB confidence

interval is given by
(

2θ̂ − θ̂(b)(1−α
2
), 2θ̂ − θ̂

(b)
(α
2
)

)
, where θ̂

(b)
γ is the 100γ-th percentile of the bootstrap

distribution. The competing methods are: (i) CPB interval with resample size n (n-CPB); (ii)

adaptive confidence interval (ACI) with pretest critical value λn = log log n; (iii) m-out-of-n CPB

interval with fixed η = 0.05 (which corresponds to the smallest acceptable resample size of 230

approximately when n = 300) (m̂0.05-CPB); (iv) m-out-of-n CPB interval with data-driven η

chosen by double bootstrap (m̂η̂-CPB). Both versions of the m-out-of-n bootstrap use a pretest

level ν = 0.001, but the performance of the approach has been shown to be robust to this choice;

see Chakraborty et al. [2] for a detailed sensitivity analysis.
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Table 2: Monte Carlo estimates of the coverage probabilities (and the mean widths, within paren-
thesis) of confidence intervals for ψ10 at the 95% nominal level. Estimates significantly below 0.95
at the 0.05 level are marked with ∗. Estimates significantly above 0.95 (conservative) are in bold
font. Examples are designated NR = non-regular, NNR = near-non-regular, R = regular.

n=300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

Ex. 8
NR

Ex. 9
NNR

n-CPB 0.936 0.932* 0.928* 0.921* 0.933* 0.931* 0.944 0.925* 0.922*
(0.269) (0.269) (0.300) (0.300) (0.320) (0.309) (0.314) (0.299) (0.299)

ACI 0.994 0.994 0.975 0.976 0.962 0.957 0.950 0.977 0.976
(0.354) (0.354) (0.342) (0.342) (0.341) (0.327) (0.327) (0.342) (0.342)

m̂0.05-CPB 0.960 0.963 0.944 0.945 0.936 0.941 0.946 0.951 0.952
(0.306) (0.306) (0.320) (0.320) (0.331) (0.325) (0.323) (0.321) (0.321)

m̂η̂-CPB 0.964 0.964 0.953 0.950 0.939 0.947 0.944 0.955 0.960
(0.331) (0.331) (0.321) (0.323) (0.330) (0.336) (0.322) (0.328) (0.328)

2 Results

Results are shown in Table 2. n-CPB shows the problem of under-coverage in most of the examples.

The ACI is conservative in some of the highly non-regular settings but delivers coverage rates closer

to nominal as the settings become more and more regular (as p decreases). Both versions of the

m-out-of-n bootstrap provide accurate coverage rates. While the success of the data-driven η

version can be expected to be maintained in other generative models, the same may not hold with

the fixed-η version for data sets coming from other generative models or at other levels of noise

(with larger fixed values of η, the method tends to become conservative). CIs constructed via the

usual n-out-of-n bootstrap method (n-CPB) have the least mean width; however these are often

associated with under-coverage. The widths of the CIs from ACI and the two versions of the m-

out-of-n bootstrap are comparable. In terms of computational cost, n-CPB and m̂0.05-CPB are

computationally comparable, while ACI and m̂η̂-CPB are computationally more expensive (each

takes about 180 times more computing time than CPB-HM).

Based on the above findings, it may be reasonable to call the m-out-of-n bootstrap method a

winner. Both versions of this method perform very well in the set of example generative models

we considered. Furthermore, this method is conceptually simple and easy to implement, and hence
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may be more attractive to practitioners. The closest competitor is ACI, which is theoretically the

strongest (by virtue of its consistency under local alternatives), but is conceptually complicated,

and often conservative in finite samples.
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