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Appendix S2: Decomposition of the proposed functional diversity measures 

 
When there are multiple assemblages defined by the investigator, as indicated in the main text, 

the functional Hill number )(QDq (Eq. 3 of the main text), mean functional diversity qMD(Q) (Eq. 
4a) and total functional diversity qFD(Q) (Eq. 4b) of the pooled assemblage can each be 
decomposed into independent alpha and beta components using a derivation similar to that 
developed by Chiu et al. [1] for ordinary Hill numbers. The decomposition procedures of all three 
measures are generally parallel and interpretations are similar. A summary of the decomposition of 
all three measures along with their interpretations are given in Table 2 of the main text.  

 
Since the decomposition procedures for the mean functional diversity and total functional 

diversity are better understood via partitioning the functional Hill numbers, we first present the 
details of decomposing the functional Hill numbers )(QDq and then apply the results to the total 
functional diversity qFD(Q). In this Appendix, we mainly focus on the decomposition of the 
functional Hill numbers and the total functional diversity. 

 
The functional gamma Hill number is defined as the effective number of equally abundant 

and equally distinct species in the pooled assemblage, where species abundances are pooled over 
assemblages. As discussed in the main text, the species relative abundance set in the pooled 
assemblage can be expressed as { +++ zzi / ; i = 1, 2,…, S}. Thus, it follows from Eq. 3 of the main 
text that the functional gamma Hill number of order q is:   
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For a single assemblage, the Hill number of order q, or the “effective number of species”, is 

defined as the number of equally abundant species that would be needed to give the same value of 
the diversity measure. We now extend this concept to functional alpha Hill number. Assume that 
there are N assemblages and there are S species in the pooled assemblage. For i = 1, 2, …, S, k = 1, 
2, …, N, let zik denote the species abundance of the ith species in the kth assemblage. As discussed 
in the main text, the variable zik could be absolute abundance, relative abundances, incidences, 
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biomasses, or cover areas. We can formulate the S x N species abundance matrix Z as  
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Let the kth column of Z be denoted by zk
T

Skkk zzz ),...,,( 21= , (the super-script “T” denotes the 
“transpose”of a matrix) and this column denotes the species abundances of the kth assemblage. So 
the matrix Z can be denoted by (z1, z2,…, zN). The matrix total is ∑ ∑= =++ =

S

i

N

j ijzz
1 1

. Let dij denote 

the functional distance between the ith and the jth species, dij ≥ 0, and dij = dji. Denote the S x S 
symmetric pairwise distance matrix by =∆ [dij].  
 

Following Chiu, we define functional alpha Hill number as the effective number of equally 
abundant and equally distinct species per assemblage. Then the following derivation leads to a 
formula. Assume that each of the N assemblages is equivalent to an idealized reference assemblage 
which contains A species and all species are equally common with a constant abundance a . That 
is, in the kth idealized assemblage, the abundance set can be expressed as an A x1 column vector 
bk = Taaa ),...,,( , k = 1, 2, …, N. Whether there are shared species among these N idealized 
assemblages is not relevant because functional alpha Hill number is independent of shared 
information (i.e., the value is independent of the between-assemblage information). Without loss 
of generality, we assume the N idealized assemblages form an abundance matrix B = (b1, b2,…, bN). 
A good feature of the idealized N-assemblage matrix B is that each assemblage has A equally 
abundant species and assemblage sizes are all equal.    
 

Let Q be the quadratic entropy of the pooled assemblage of the actual assemblages, i.e., 

∑ ∑ ++++=
i j jiij zzzdQ 2/ . In the idealized assemblage, we have a constant distance Q for all 

species pairs; see Table 1 of the main text for illustration. The idealized distance matrix is denoted 
by )(Q∆ .   

 
The two matrices Z and B are “equivalent” in the sense that any q-th power sum (q ≥ 0) of the 

elements of the matrix Z = (z1, z2,…, zN) should give identical values when the same function is 
applied to the idealized reference matrix B = (b1, b2,…, bN) with bj = Taaa ),...,,( for all j. We 
consider the following two special functions: 
 
(1) The sum of all elements in Z is thus equal to the corresponding sum in B. This sum for Z = (z1, 

z2,…, zN) is ++z , whereas the sum for B = (b1, b2,…, bN) is aAN (since each column has A 
species and there are N columns with all elements being equal to a ). Thus we obtain 

)/(ANza ++= .  
 
(2) Choose all possible combinations of any two columns of the matrix Z and form the weighted 

(by distance) q-th power sum:  
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Then the same function is applied to the simple reference assemblage to obtain  
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Equating these two functions shows that A (the proposed functional alpha Hill number) has the 
following form:  
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This new alpha Hill number is interpreted as the “effective number of equally abundant and 
equally distinct species per assemblage”. Note here in the above alpha formula, Q refers to the 
quadratic entropy of the pooled assemblage. Then based on a multiplicative partitioning, we define 
the functional beta Hill number of order q as the ratio: 

)(QDβ
q � )()/( QDQD q

γ
q

α= .    

This functional beta Hill number is interpreted as the effective number of equally large and 
completely distinct assemblages.  
 
   The above theory can be directly applied to decompose the (total) functional diversity qFD(Q). 
The functional gamma diversity is the effective total distance between species in the pooled 
assemblage with a constant distance Q for all species pairs, where Q denotes the quadratic entropy 
of the pooled assemblage. It follows from the derivation of the functional gamma Hill numbers 
that we have 2)]([)( QDQQFD γ

q
γ

q ×= , and formulas are given in Eqs. 6a and 6b in the main text. 
The functional alpha diversity is defined as the effective total distance between species of a pair of 
assemblages. Our above derivation implies that 2)]([)( QDQQFD α

q
α

q ×= . Substituting the functional 
alpha Hill number, we then obtain the formulas of the functional alpha diversity as shown in Eqs. 
7a and 7b in the main text. The functional beta diversity based on a multiplicative rule is:  
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Similar gamma and alpha components for the mean functional diversity can be also derived 
respectively as )]([)( QDQQMD γ
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See Table 2 of the main text for a summary.  
 

In the following proposition, we prove for all q ≥ 0 that the functional beta Hill number of 
order q is always between 1 and N regardless of the functional alpha Hill numbers. Also, the 
functional beta diversity of order q is always between 1 and N2 regardless of the functional alpha 
diversity. Then the alpha and beta components obtained from decomposing each measure are 
unrelated (or independent).  
 

For any arbitrary symmetric matrices and all orders of q ≥ 0, when the number of 
assemblages, N, is fixed, the functional beta Hill number of order q is always in the range [1, N], 
i.e., NQMDQD β

q
β

q ≤=≤ )()(1 for all q ≥ 0. The functional beta diversity of order q is always in 

the range [1, N2], i.e., 2)(1 NQFDq ≤≤ β for all q ≥ 0. These conclusions are based on the 
following proposition. 
 
Proposition S2.1:  
 
(a) For all q ≥ 0, the functional alpha and gamma Hill numbers satisfy the following inequality:  
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Similar inequalities are also valid for the mean functional alpha and gamma diversities.   

(b) For all q ≥ 0, the functional alpha and gamma diversities satisfy the following inequality:  
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or equivalently,  
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Proof: It is sufficient to prove (B3) and (B4) because (B5) and (B6) follow directly from (B3) and 
(B4). From Eqs. (B1) and (B2), the functional gamma and alpha Hill number for q ≠ 1 is 
respectively 
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We first prove )]([ )( QDNQD α
q

γ
q ×≤ . For q > 1, this conclusion follows directly from the 

following inequality:  
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Similarly, for 0 ≤ q ≤ 1, the same conclusion follows from the following inequality: 
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For q = 1, note that we have 
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inequality implies that for any species pair (i, j), we have  
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which is equivalent to  
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For 10 <≤ q , qxxf =)(  is a concave function, so the Jensen inequality implies that for 
species pair (i, j), we have 
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Then we have 
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Equivalently,   

)(log2log2)(log2log2 11 QDNQDN αγ +≥+ .  

Then the inequality )()( 11 QDQDγ α≥ is obtained.  
 
Proposition S2.2 (A property of monotonicity used for Example 2 of the main text): Consider 
N assemblages indexed by 1, 2, …, N. Assume that species a is a non-shared species in an 
assemblage (say, Assemblage 1), i.e., species a does not exist in any other assemblages. Assume 
that species b is a non-shared species in a different assemblage (say, Assemblage 2). Let the 
functional distance between species a and species b be denoted by dab. Then the functional beta 
Hill number of order q is always a non-decreasing function with respect to dab. This implies that 
any differentiation measure based on the functional beta Hill number is also a non-decreasing 
function with respect to dab.  
 
Proof: From the formulas of the functional alpha and gamma diversities, the functional beta 
diversity of order q is expressed as (see the main text for notation) 
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We can simplify the above formula as  
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We first prove the proposition for q > 1. For the non-shared species pair (a, b) with distance dab 
between these two species, we have 
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The derivative of Eq. (B7) with respective to dab is 
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Since for q > 1 and for any distance between species i and j, we have  
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Thus, the derivative in Eq. (B8) must be non-positive. Therefore, q

β
q QFD −1)]([  is non-increasing 

with dab for q > 1, implying that )(QFDβ
q is non-decreasing with dab. For q < 1, parallel steps also 

lead the same conclusion. The proof for q = 1 is direct. 
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