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Appendix S5: Supplementary examples and comparisons 
 
(All equation numbers refer to those in the main text.) 
 
Example: A simple functional distance matrix to show the counter-intuitive behavior of the 
traditional differentiation measure based on an additive partitioning of the quadratic entropy  

 
Consider two hypothetical completely distinct assemblages (i.e. no shared species) each with 

S equally common species. Assume that the functional distance is a constant d for distinct-species 
pairs and 0 for same-species pairs. We first apply Rao’s quadratic entropy to this simple distance 
matrix. The quadratic entropy Q of each assemblage is d(1−1/S). This would be the alpha quadratic 
entropy Qα of the assemblages. For any fixed d, the alpha value will be high (i.e., tends to the 
maximum possible value of d) if and only if species richness S is high. In the pooled assemblage, 
there are 2S equally common species with a constant functional distance d for distinct-species 
pairs and 0 for same-species pairs, so the gamma quadratic entropy of the pooled assemblage is Qγ 
= d[1−1/(2S)].  

 
The traditional differentiation measure based on the additive partitioning is γαγβ QQQQ /)(* −= ; 

see Eq. 2c. Thus, the differentiation measure is [d/(2S)]/ [d − d/(2S)] = 1/(2S−1), a number that 
approaches zero (wrongly indicating that there is almost no differentiation) when alpha is high 
(equivalently, when S is high), even though the two assemblages are completely distinct. Chiu et al. 
[1] proved that when the alpha quadratic entropy is high, the additive differentiation measure 
based on the quadratic entropy always tends to zero for any assemblages, not only for simple 
completely distinct assemblages, but also for more complicated assemblages and real data; see 
Example 3 of the main text.  

 
The resolution in Eq. 2d of the main text works because this simple distance matrix is 

ultrametric. The effective number of species for the alpha diversity is SdQ =− )/1/(1 α  and the 
effective number of species for the gamma diversity is SdQ 2)/1/(1 =− γ . Thus the multiplicative 
beta based on these effective measures is 2 and the two transformed differentiation measures in 
Eqs. 2e and 2f are both unity, which correctly indicates the differentiation attains the maximum. 
Our proposed normalized functional differentiation measures )(1 * QCqN− and )(1 * QUqN−  (Table 
3 of the main text) are always 1 for any q, any richness S, and any functional distance d. For this 
example, the correct answer is unequivocal: the two completely distinct assemblages in this simple 
case should attain the maximum differentiation of unity. This example shows that the traditional 
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measures based on the additive partitioning of the quadratic entropy cannot work properly even for 
this simple example.  

 
Two supplementary cases for Example 1 of the main text   
 

In Example 1 of the main text, we specifically consider the special case that all species in the 
two assemblages are equally abundant for illustrative purposes. Here we append two more cases 
that species abundances are heterogeneous in both assemblages. 
 
Case 1: Shared species are abundant species 
   
In Assemblage I, species abundances are 0.01 (for Species 1–Species 5), 0.02 (for Species 
6–Species 10), and 0.085 (for Species 11–Species 20); 
In Assemblage II, species abundances are 0.05 (for Species 9, 10, 11–18), 0.075 (for Species 19, 
20, 21–23), and 0.025 (for Species 24 –Species 28);  
There are 12 shared species (Species 9, 10, 11– 20), and a total of 28 species in the pooled 
assemblage.  
 
Table S5.1. Comparison of various differentiation measures for Matrix I (with γQ = 0.463, αQ = 
0.462) and Matrix II (with γQ = 0.118, αQ = 0.102) based on abundance and function (A&F), on 
function (F) only, and abundance (A) only. 
 

Measure Order Matrix I  Matrix II  
  A&F F A#  A&F F A# 

)(1 QC*
qN−  

q = 0 0.324 0.324 0.4  0.579 0.579 0.4 
q = 1 0.271 --- 0.267  0.365 --- 0.267 
q = 2 0.322 --- 0.256  0.342 --- 0.256 

         

)(1 * QUqN−  
q = 0 0.658 0.658 0.571  0.846 0.846 0.571 
q = 1 0.271 --- 0.267  0.365 --- 0.267 
q = 2 0.106 --- 0.147  0.115 --- 0.147 

γ

αγ
β Q

QQ
Q

−
=*  q = 2 0.003    0.134   

N
Q

Q βe
e /11

/11 ,*
, −

−
=β

  q = 2 0.006    0.035   

1
1,**

, −

−
=

N
Q

Q βe
e β

 q = 2 0.003    0.018   
# Differentiation measures are the abundance-based local differentiation measure (1–CqN) and 

regional differentiation measure (1–UqN) obtained from partitioning Hill numbers [1];  
--- No measures for q = 1 and q = 2 because species abundances are not considered for measures 
based on function (F) only.  
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Case 2: Shared species are rare species 
   
In Assemblage I, species abundances are 0.085 (for Species 1–Species 10), 0.01 (for Species 
11–Species 15), and 0.002 (for Species 16–Species 20); 
In Assemblage II, species abundances are 0.025 (for Species 9, 10, 11– 13), 0.05 (for Species 14, 
15, 16 –23), and 0.075 (for Species 24 –species 28);  
There are 12 shared species (Species 9, 10, 11– 20), and a total of 28 species in the pooled 
assemblage.  
 
Table S5.2. Comparison of various differentiation measures for Matrix I (with γQ = 0.480, αQ = 
0.475) and Matrix II (with γQ = 0.244, αQ = 0.098) based on abundance and function (A&F), on 
function (F) only, and abundance (A) only. 
 
 

Measure Order Matrix I  Matrix II  
  A&F F A#  A&F F A# 

)(1 QC*
qN−  

q = 0# 0.324 0.324 0.4  0.579 0.579 0.4 
q = 1 0.681 --- 0.680  0.864 --- 0.680 
q = 2 0.879  --- 0.832  0.957 --- 0.832 

         

)(1 * QUqN−  
q = 0 0.658 0.658 0.571  0.846 0.846 0.571 
q = 1 0.681 --- 0.680  0.864 --- 0.680 
q = 2 0.646 --- 0.712  0.848 --- 0.712 

γαβ QQQ /1* −=   q = 2 0.010    0.598   

N
Q

Q βe
e /11

/11 ,*
, −

−
=β

  q = 2 0.022    0.325   

1
1,**

, −

−
=

N
Q

Q βe
e β

 q = 2 0.011    0.194   
# Differentiation measures are the abundance-based local differentiation measure (1–CqN) and 

regional differentiation measure (1–UqN) obtained from partitioning Hill numbers [1];  
--- No measures for q = 1 and q = 2 because species abundances are not considered for measures 
based on function (F) only.  
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A supplementary case for Example 2 of the main text  
 

In Example 2 of the main text, we consider the special case that the two focal assemblages are 
completely distinct (no species shared, and thus no pairwise distances shared). Here we present 
similar results for a case that there are shared species between the two assemblages.  
 
Table S5.3. Comparison of various differentiation measures between two assemblages for an 
ultramteric distance matrix (Case I below) and a non-ultrametric distance matrix (Case II below). 
Assume the two assemblages are not completely distinct. There are three equally common species 
(a, b, c) in the first assemblage, and three equally common species (b, c, d) in the second 
assemblage. In the pooled assemblage, there are four species (a, b, c, d) with relative abundances 
(0.167, 0.333, 0.333, 0.167). As explained in the text, we expect that the differentiation for Case II 
should not be lower than that for Case I.  
 
Case I: An ultrametric distance matrix for four species (a, b, c, d) with γQ = 0.122, αQ = 0.111.  



















01.02.02.0
1.002.02.0
2.02.001.0
2.02.01.00

 

 
Case II: A non-ultrametric distance matrix for four species (a, b, c, d) with γQ = 0.161, αQ = 0.111. 



















01.02.09.0
1.002.02.0
2.02.001.0
9.02.01.00

 

 

Measure Order q 
Ultrametric 

distance matrix 
(Case I) 

Non-ultrametric 
distance matrix 

(Case II) 

)(1 QC*
qN−  

q = 0 0.273 0.448 
q = 1 0.364 0.517 
q = 2 0.455 0.586 

    

)(1 * QUqN−  
q = 0 0.600 0.765 
q = 1 0.364 0.517 
q = 2 0.172 0.262 

γ

αγ
β Q

QQ
Q

−
=*  q = 2 0.091 0.310 

 N
Q

Q βe
e /11

/11 ,*
, −

−
=β

 q = 2 0.250 0.127 

1
1,**

, −

−
=

N
Q

Q βe
e β

 q = 2 0.143 0.068 
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Comparison of our framework with Leinster & Cobbold (2012) approach 
 

Leinster & Cobbold [2] derived a parametric class of measures sensitive to species similarity 
based on a framework of Hill numbers. The similarity may be based on phylogeny, ecosystem 
function, or any other species character. We find that their measure (referred to as the LC measure 
hereafter) may not be sensitive to species abundances when species similarity matrix is computed 
from species traits in functional analysis. When species similarity matrix deviates greatly from a 
naïve identity matrix, their measure typically yields very low diversity values especially for 
assemblages with many species; this causes problems for the interpretation of “species 
equivalents” in their approach. Note that in the bottom right panel of Fig. 3 of [2], as q varies 
between 0 and 5, their measure for a non-naive similarity matrix decreases from 1.27 to 1.25 for 
Case “TS1” with ~250 species and decreases from 1.25 to 1.22 for Case “TS3” with ~ 200 species, 
as shown in the bottom left panel of their Fig. 3. This reveals that the LC measure hardly varies 
with the order q for the two cases considered in their Fig. 3. We thus computed several other real 
examples to see whether the LC measure generally exhibits a similar pattern. We describe two 
typical examples to show our findings. 
 

We applied the LC measure to the artificial data (Example 2 of the main text) and the real 
data (Example 3 of the main text), so that readers can make comparisons. In Example 2, there are 
20 equally abundant species in each of the two focal assemblages, and 12 species are shared. Two 
simulated distance matrices with all distances between 0 and 1 (Matrix I and Matrix II, displayed 
in Appendix S6) are considered; see the main text. In Example 3, the full data contain a total of 43 
vascular plant species collected three fore-dune habitats: embryo dunes (EM; 17 species), mobile 
dunes (MO; 39 species) and transition dunes (TR; 42 species). The species relative abundances are 
provided in Table S5.1 of this appendix). The distance matrix for 43 species is displayed in 
Appendix S6. All species distances (between 0 and 1) are obtained from the Gower 
mixed-variables coefficient of distance. Since the LC measure is based on species similarity matrix, 
we considered two types of similarity metrics computed from the distance matrices: (i) the 
one-complement of each distance; (ii) the transformation exp(–d) of each distance d. The plot of 
the LC measure with respect to the order q for the two types of similarity metrics is given in the 
following figure for the two examples.  
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(a) The Leinster & Cobbold (LC) measure for two matrices based on artificial  

data in Example 2 of the main text 

 
   
(b) The Leinster & Cobbold (LC) measure for three habitats (EM, MO and TR)  

based on real data in Example 3 of the main text 

 
 

Figure S5.1. Diversity profiles as a function of the order q (0 ≤ q ≤ 5) of the Leinster and Cobbold 
(LC) measure for two examples. In the left panels, the similarity is defined as the one-complement 
of a distance. In the right panels, similarity is defined as exp(–d) of a distance d. The “range” in 
the plots and in the following captions refers to the range of the LC measure when q is increased 
from 0 to 5.  
(Upper left panel) Matrix I (black line, in range: 1.94~ 1.91) and Matrix II (dotted line, in range: 

1.21~1.20).  
(Upper right panel) Matrix I (black line, in range: 1.59~ 1.58) and Matrix II (dotted line, in range: 

1.16~1.15).  
(Lower left panel) EM Habitat (black line, in range: 2.09~ 2.01), MO Habitat (red line, in range: 

2.28~ 2.21) and TR Habitat (blue line, in range: 2.31~ 2.24).  
(Lower right panel) EM Habitat (black line, in range: 1.63~ 1.61), MO Habitat (red line, in range: 

1.71~ 1.69) and TR Habitat (blue line, in range: 1.73~ 1.71). 
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The above plots reveal that the LC measure takes values in a very narrow range and this 

range hardly changes for the two different types of similarity matrices. Since the order q controls 
the measure’s sensitivity to species relative abundances and a larger value of q place progressively 
more weight on common species, these plots in Figure S5.1 demonstrate that the LC measure may 
not be sensitive to the species abundances. We have found similar patterns for many other data 
sets. A related question is thus how to interpret the magnitude and “effective numbers” of the LC 
measure.  
 

Recently, Reeve et al. [3] proposed formulas for the alpha, beta and gamma diversities based 
on the LC measure and on the decomposition framework of ordinary Hill numbers. Here we 
consider the simplest equal weight case and apply Reeve et al. formulas to a simple similarity 
matrix. Consider two communities each with four species (1, 2, 3, 4). The relative abundances of 
the four species in community I are (0.98, 0.003, 0.001, 0.016). The relative abundances of the 
same four species for community II are (0.90, 0.009, 0.082, 0.009). Assume that the pairwise 
similarity for the four species is given by this matrix:  

 



















19.000
9.0109.0

0019.0
09.09.01

 

 
Then we obtain the following alpha and gamma diversity for four values of q:  
 
 

Order Gamma Alpha 
q = 0 1.2605  1.5375  
q = 0.5 1.1120 1.1570 
q = 1 1.0611 1.0679 
q = 2 1.0343 1.0345 

 
 
For this case, the gamma LC measure is less than the alpha LC measure not only for the four 
specific values of q in the above table but also for all values of q ≥ 0. This situation violates the 
necessary condition that alpha must always be less than or equal to gamma.  
 

Leinster & Cobbold ([2], p. 478) indicated that their metric has close connections with the 
phylogenetic indices of Faith [4] and Chao et al. [5]. This may be a misleading statement. In their 
Appendix, Leinster & Cobbold demonstrated that their formula could include Faith’s PD and Chao 
et al. [5] phylogenetic Hill number only for a particular constructed similarity matrix (possibly 
non-symmetric) and a special set of species abundances. Note that their particular similarity matrix 
for species depends on species relative abundance. Thus, when two communities have the same set 
of species with different sets of species abundances, the corresponding particular similarity 
matrices are then different. Even within a single community, if two samples result in different 
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species abundances, then LC’s particular similarity matrices are different. Thus, the “connection” 
between their metric and Chao et al. measure is only based on an uninterpretable similarity matrix. 
A useful “connection” between two measures should be based on any given matrix in a broad class, 
not just for a single particular constructed matrix.  

 
For any given ultrametric tree, we can divide each species pairwise phylogenetic distance by 

the tree depth so that all distances are scaled to be in the range [0, 1]. When the similarity between 
any two species is defined as the one-complement of the scaled distance, the LC measure for q = 2 
reduces to the Chao et al.’s phylogenetic Hill number of the same order. This is the only general 
connection that we have found between the LC measure and Chao et al. [5] phylogenetic Hill 
numbers if the similarity matrix is not a naive identity matrix.  
 
Comparison of our framework with Scheiner (2012) approach 

 
Scheiner [6] proposed a metric that integrates abundance, phylogeny and function based on a 

framework of Hill numbers. Our framework (Chao et al. [5] for phylogenetic diversity, and this 
paper for functional diversity) is also based on Hill numbers. However, the two approaches are 
completely different. In this section, we describe our fundamental concept and discuss the 
differences between our framework and Scheiner’s approach.  
 
The basic difference 
 

The major difference lies in the interpretation of Hill numbers. In Scheiner’s approach, the 
ordinary Hill numbers are interpreted as the variability in relative abundances among species. 
Based on this approach, Scheiner’s phylogenetic diversity quantifies the variability of proportional 
phylogenetic divergences of species, and his functional diversity quantifies the variability of 
proportional functional distinctiveness.  
 

Our interpretation of Hill numbers is different. The fundamental concept in our approach is 
based on the fact that there is a unique idealized assemblage with equally abundant species so that 
the actual assemblage and this idealized assemblage have the same diversity of order q. Thus, our 
extension to phylogenetic diversity and functional diversity leads to completely different measures 
as briefly described as follows.  
 
(i) Phylogenetic diversity measures 

 
Our phylogenetic Hill number (or mean phylogenetic diversity) of order q, denoted by 
)(TDq , is the effective number of equally abundant and equally phylogenetically distinct species 

with a constant branch length T from the root node. HereT denotes the abundance-weighted mean 
distance from a tip node to the root node; see Fig. 1 of Chao et al. [5] for the definition of T . For 
an ultrametric tree with tree length T, thenT reduces to the tree length T, and the measure is simply 
denoted by )(TDq . Generally, if )(TDq = z, then the phylogenetic Hill number of the assemblage 
is the same as the diversity of an idealized assemblage consisting of z equally abundant and 
(phylogenetically) equally distinct lineages all with branch lengthT from the root node. The basic 
concept is that there exists a unique idealized assemblage with equally abundant and equally 
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distinct species so that the actual assemblage and this idealized assemblage have the same 
diversity of order q.  

 
The phylogenetic Hill number (in units of “species equivalent”) does not incorporate 

information about the actual length of the phylogenetic tree because it is independent of the scale 
of lineage lengths. To incorporate the units of lineage length, we also proposed the phylogenetic 
diversity )(TPDq (in units of “lineage length”), )]([)( TDTTPD qq ×= . Thus, we not only have a 
measure in units of “species equivalents” but also a measure in units of “lineage length”. This is 
more useful biologically since it expresses the amount of evolutionary history in the tree (with 
branches weighted by the size of their contribution to the present-day assemblage), and is also 
fruitful mathematically because we then can link our measures to Faith PD (for q = 0), 
phylogenetic entropy [7] (for q = 1), and Rao’s quadratic entropy (for q = 2). Scheiner’s measure 
cannot be linked to the phylogenetic entropy, nor to Rao’s quadratic entropy. 
 
(ii) Functional diversity measures 
 

Our functional Hill number denoted by )(QDq  (see Table 1 of the main text) is interpreted 
as “the effective number of equally abundant and (functionally) equally distinct species”. Thus 
if )(QDq = v, then the functional Hill number of order q of the actual assemblage is the same as 
that of an idealized assemblage having v equally abundant and equally distinct species with a 
constant distance Q for all species pairs. Our concept for functional diversity is based on the fact 
that there exists a unique idealized assemblage with equally abundant and equally distinct species 
so that the actual assemblage and this idealized assemblage have the same diversity of order q.  

 
As with our phylogenetic Hill numbers, the functional Hill numbers )(QDq  (in units of 

“species equivalent”) are scale-free, so they need to be converted to our functional diversity 
qFD(Q) (the effective total functional distance between species), defined as  

2)]([)( QDQQFD qq ×= . Thus, we can link our measures to FAD (for q = 0), and to the weighted 
Gini-Simpson index (for q = 2) defined by Guiasu & Guiasu [8,9]; see the main text for details. To 
our knowledge, Scheiner’s metric cannot be linked to these two previous measures.  
 
Different meanings of “species equivalents” 
  

Scheiner’s integrated metric and our phylogenetic (and functional) Hill number are both in 
units of “effective number of species” or “species equivalents”, and the “species equivalent” in 
both approaches is interpreted as the equally abundant and equally distinct species. However, the 
definition of “equally distinct” diverges between Scheiner’s approach and ours. We use a simple 
example to illustrate the two different meanings.  
 
(i) Phylogenetic diversity measures 
 

Consider the following three assemblages with ultrametric cladograms. Each assemblage 
includes four species and the tree depth is T = 8 units. The number along each branch segment 
denotes the length of that branch. For each assemblage, we assume that all four species are equally 
abundant.  
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For the above three cladograms with T = 8 units, we give our phylogenetic Hill numbers )(TDq  
(in units of “species equivalents”), phylogenetic diversity )(TPDq  (in units of “lineage length”) 
and Scheiner’s phylogenetic diversity in the following table.  

 
 
Measure Order Assemblage/Cladogram 
  (a) (b) (c) 
Chao et al. (2010) 
phylogenetic 
diversity )(TPDq  

q = 0 26 32 14 
q = 1 24.78 32 11.31 
q = 2 23.27 32 9.85 

Chao et al. (2010)  
phylogenetic Hill 
number )(TDq  

q = 0 3.25 4 1.75 
q = 1 3.08 4 1.41 
q = 2 2.91 4 1.23 

Scheiner (2012) 
phylogenetic 
diversity 

q = 0 4 4 4 
q = 1 4 4 4 
q = 2 4 4 4 

 
 
All the above three cladograms have the same proportional divergences as defined by 

Scheiner. For any q ≥ 0, his phylogenetic diversity which quantifies the variability of proportional 
phylogenetic divergences of species thus yields four equally distinct species for all three 
assemblages. When his measure takes a maximum value of four, the assemblage may correspond 
to the four equally abundant species in cladograms (a), (b), (c) or any other symmetric or balanced 
cladograms. This explains why Scheiner ([6], p. 1195) indicated that his metric is a measure of tree 
“symmetry” or “balance”. His measure cannot distinguish the difference among the three 
assemblages, and thus “species equivalents” does not have a unique reference assemblage.  

 
Our phylogenetic measures )(TDq and )(TPDq both satisfy the “weak monotonicity” property 

[5]. This property requires that if a newly added rarest species is maximally distinct from all other 
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species in the assemblage, then a phylogenetic measure should not decrease. However, Scheiner’s 
phylogenetic diversity measure does not satisfy this property. Note that for q > 0, if such a species 
is added to the assemblage (a) or (c) in the above figure, that tree becomes non-symmetric, 
implying a possible decline in a measure of symmetry.  

 
Note that in Scheiner’s measure, “equally distinct” means species are equally divergent from 

the age of the root node. Our definition of “equally distinct” implies that any two species must 
have a constant phylogenetic distance of T (or T in an ultrametric tree), or equivalently, all 
branch lengths must be equal to T (or T) as cladogram (b) given above. For cladogram (a), the 
distance between Species 1 and Species 2 is 5 units whereas the distance between Species 1 and 
Species 3 is 8 units, so the species in cladogram (a) are not “equally distinct” in our perspective. 
Similarly, the four species in cladogram (c) are not “equally distinct” with branch lengths of 8 
units either. Only cladogram (b) is the unique idealized assemblages with all species being 
“equally distinct” with all branch lengths of 8 units. Thus, for the “effective number of species” in 
our phylogenetic diversity measure, there exists a unique reference assemblage so that the actual 
assemblage and this idealized assemblage have the same diversity of order q. For example, in the 
special case of q = 0, the phylogenetic Hill number of cladogram (c) is 1.75. Then this means the 
zero-order diversity of the assemblage is the same as an idealized assemblage with 1.75 equally 
abundant species with a constant branch length of 8 units, i.e., the cladogram of the idealized 
reference assemblage is like cladogram (b) but only with 1.75 species.  

 
The above table reveals that when diversity is based on our phylogenetic Hill number 
)(TDq and phylogenetic diversity )(TPDq , the three assemblages for any q have consistent 

ordering: (b) > (a) > (c), whereas Scheiner’s measure shows (a) = (b) = (c). Ecologists may use 
this example to choose the measure to be used in their analysis.  
 
(ii) Functional diversity measures 
 

We use a simple example to compare the difference between our functional diversity 
measures and Scheiner’s approach. Consider the following example: In Assemblage A, all species 
are equally distinct with species pairwise distance dij = 0.1 units; In Assemblage B, all species are 
equally distinct with dij = 0.9 units. Scheiner’s functional diversity quantifying the variability of 
functional distinctiveness will give the same functional diversity for these two assemblages. Yet, 
from our approach, there are S species with a constant distance of 0.1 for all species pairs in 
Assemblage A, and our functional diversity (i.e., effective total distance) between species is S2 x 
0.1. For Assemblage B, there are S species with a constant distance of 0.9 for all species pairs, and 
the functional diversity is S2 x 0.9. The effective numbers of species are the same for the two 
assemblages, but the total distance between species for the two assemblages are different. Thus, 
Scheiner’s measure loses the information about the magnitude of species pairwise distances, which 
we think is important to characterize distance-based traits diversity.  
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Table S5.4. Species identities and relative abundances in three dune habitats: upper beach and 
embryo dunes (EM, 17 species), mobile dunes (MO, 39 species) and transition dunes (TR, 42 
species). A relative abundance of 0 for a species in a habitat means that the species does not exist 
in that habitat. See the main text for data description and details.  

         Species  EM MO TR 
Ammophila arenaria 0  0.118  0.006  
Anthemis maritima 0.024  0.132  0.046  

Asparagus acutifolius 0  0.003  0.003  
Bromus diandrus 0  0.005  0.032  
Cakile maritima 0.217  0.024  0.004  

Calystegia soldanella 0.027  0.026  0.009  
Centaurea sphaerocephala 0  0.008  0.015  

Chamaesyce peplis 0.097  0.014  0.001  
Clematis flammula 0  0.004  0.018  

Crucianella maritima 0  0.022  0.080  
Cutandia maritima 0.008  0.036  0.095  

Cyperus kalli 0.003  0.047  0.037  
Daphne gnidium 0  0  0.001  

Echinophora spinosa 0.029  0.029  0.004  
Elymus farctus 0.161  0.134  0.044  

Eryngium maritimum 0.021  0.020  0.001  
Euphorbia terracina 0  0.003  0.028  
Helicrisum stoechas 0  0.004  0.029  
Juniperus oxycedrus 0  0  0.008  

Lagurus ovatus 0  0.003  0.022  
Lonicera implexa 0  0.001  0.002  

Lophocloa pubescens 0  0.005  0.006  
Lotus cytisoides 0  0.005  0.062  

Medicago littoralis 0  0.021  0.081  
Medicago marina 0.003  0.047  0.012  
Ononis variegata 0.005  0.070  0.025  

Otanthus maritimus 0.043  0.005  0 
Pancratium maritimum 0.016  0.042  0.039  
Phillirea angustifolia 0  0.002  0.005  

Pistacia lentiscus 0  0.001  0.008  
Plantago coronopus 0.003  0.013  0.017  

Polygonum maritimum 0.038  0.003  0.001  
Prasium majus 0  0.001  0.003  

Pseudorlaya pumila 0  0.007  0.008  
Pycnocomon rutifolium 0  0.003  0.042  

Quercus ilex 0  0  0.003  
Rubia peregrina 0  0  0.003  

Salsola kali 0.193  0.025  0.002  
Silene canescens 0  0.058  0.089  

Smilax aspera 0  0.003  0.009  
Sonchus bulbosus 0  0.006  0.005  

Sporobolus virginicus 0.113  0.044  0.021  
Vulpia fasciculata 0  0.009  0.073  
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