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(1) Supplementary Methods 

Variation in the mobile phone coverage 

Figure S1 shows the mobile phone coverage  for each urban unit in Portugal 

(reciprocal (REC) network, overall observation period of = 409 days) with mean and 

standard deviation s =0.18 0.13, 0.13 0.09, 0.14 0.11 for Statistical Cities (STC), 

Larger Urban Zones (LUZ) and Municipalities (MUN), respectively. We find no 

significant correlations between the coverage and the population size (  = -0.02,  

p-value = 0.82 for STC,  = 0.34, p-value = 0.37 for LUZ,  = 0.09, p-value = 0.14 for 

MUN). The (non-significant) positive value of  for the 9 LUZ is mainly induced by a 

very low coverage of two smaller units located on the Azores and the island of Madeira 

(figure S1e). The otherwise low correlation levels indicate no asymmetric distribution of 

mobile phone users with respect to the size of the urban units. 

We also do not find a clear trend consistent across all city definitions when applying 

linear regression to the log-transformed data, see figures S1d - S1f. Note that for the 

Municipalities there is a slight yet significant increase in s  with population size. In this 

case, one could suspect that the superlinear scaling is the result of a larger number of 

subscribers in larger Municipalities. To test for this possibility, we increasingly filtered 

out a small number of Municipalities that have a lower coverage than a minimum 

threshold smin . Table S5 shows that (i) the positive relation between the population size 

and the coverage vanishes already for very small values of the minimum threshold  

( smin ≈ 5% ), while (ii) the superlinear scaling of the interaction indicators persists. This 

shows that the observed increase in s  is introduced by a small number of Municipalities 

with the lowest coverage, and that the superlinear scaling holds for the majority of 

Municipalities for which there is no positive relation between population size and 

coverage. Thus, this increase does not affect our conclusions reported in main text. 

To further exclude the possibility that the superlinear scaling is the result of an increased 

number of subscribers in large cities compared to rural areas (e.g., due to better network 

accessibility), we analysed the scaling relation  between the interaction 
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indicators, , and the number of callers, , in each urban unit. If  is equivalent to the 

exponent  for the population size N  (see main text), a potential effect of the varying 

number of callers with city size can be further excluded, while s  can be interpreted as a 

random variable that is independent of N . Comparing table S6 with table 1 in the main 

text confirms the excellent agreement of the two scaling exponents. 

As a consequence, we would expect similar power-law exponents when the data is not 

rescaled by the coverage. However, as mentioned in the main text, a power law is 

difficult to justify in that case which is reflected in substantially lower coefficients of 

determination. For instance, fitting the relation between the ‘non-normalised’ cumulative 

degree, K , (figure 1a) and city size in Portugal (Statistical Cities) by a power law leads 

to β = 1.17 (95% CI [1.10, 1.23]) with Adj-R2 = 0.90 (in comparison to Adj-R2≈1 after 

rescaling). 

Moreover, superlinear power-law scaling is also valid when considering only cities with a 

high coverage. As an example, limiting the analysis to Statistical Cities with , 

which holds for 19 urban units and implies an average coverage of  (compared 

to  for all Statistical Cities), we get β = 1.17  (95% CI [1.10, 1.25]) for the 

rescaled cumulative degree (REC network, ΔT = 409 days). Similarly, for the non-

reciprocal (nREC) network, which contains a larger number of nodes than its reciprocal 

counterpart, we get β = 1.18  (95% CI [1.08, 1.28]) for s ≈ 0.50 , corresponding to the 

15 best sampled (i.e., with the highest coverage) Statistical Cities. Moreover, β >1 holds 

for even higher values of the average coverage, but the small number of urban units that 

fulfil this condition strongly limits here our conclusions. Nevertheless, together with the 

results from the UK (>95% market share), these findings indicate that superlinear scaling 

is largely robust against different subsamples (i.e., different market shares) of the 

complete interaction network. 

To test whether the number of mobile phone subscribers depends on socioeconomic 

urban characteristics such as wages, we utilised publicly available income data at the 

Municipality level in Portugal for 2009 [1]. We find no correlation between the coverage 
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(REC network, ΔT = 409 days) and the per-capita monthly income ( r  = 0.01,  

p-value = 0.82), again supporting the assumption of a symmetric composition of the user 

base with respect to the different urban units. In contrast, we find a significant correlation 

between the average degree k  and the per-capita monthly income (  = 0.35,  

p-value < 10-4), supporting the hypothesised correspondence between the average social 

connectivity and socioeconomic urban quantities. 

Finally, the superlinear scaling relations also hold when restricting ki  to calling partners 

within the same city. For instance, we find for the rescaled cumulative degree of the 

Statistical Cities (REC network, ΔT = 409 days) a scaling exponent of β = 1.26  (95% CI 

[1.23, 1.30]). Nevertheless, as smaller cities may hereby induce trivial boundary effects 

that lead to an overestimation of β , we included all links for the results reported in the 

main text. 

 
Individual-based interaction distributions 

The individual-based interaction indicators are inherently time-aggregated values that 

become affected by longer periods of call inactivity due to, e.g., cancelling an ongoing 

subscription during the observation window . Those callers that are not active on a 

regular basis naturally induce a bias resulting in a skewness in the distributions of ,  

and , as their accumulated measures remain at lower values (figure S4). To compare 

the distributions in a meaningful way [2], we focus here on regularly active callers by 

estimating the probability distributions based on those individuals that initiate and receive 

at least one call every  subsequent days. Less active individuals are included in terms 

of their connections to those regularly active callers. We chose 

= 1/[90 days] which substantially decreases the skewness, while considering over 

50% of all nodes in the reciprocal network (i.e.,  nodes) as regularly active. 

The superlinear scaling of the mean is not affected by . In addition, we tested 

alternative methods of homogenising the set of callers. For instance, we selected only 

individuals that appeared both in the first and last month of the overall observation 

period, yielding again qualitatively similar results to those reported in the main text. In all 
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cases, while the exact shape of the distributions generally depends on the network 

sampling [3], the mean of the distributions showed superlinear scaling compatible with 

table 1 in the main text. 

To choose the probability model that best describes the homogenised distributions we 

selected as trial models (i) the lognormal distribution, (ii) the generalised Pareto 

distribution, (iii) the double Pareto-lognormal distribution and (iv) the log-skew-normal 

distribution (or ‘skewed lognormal distribution’). The lognormal distribution (LN) of a 

random variable X  implies that Y = lnX  is normally distributed with probability density 

 

. (S1) 

 

Lognormal distributions are naturally generated by multiplicative random processes and 

thus are widespread in sociology and economics [4]. The generalised Pareto (GP) 

distribution includes the exponential and the Pareto distribution as special cases [5]. The 

latter is a commonly used power-law distribution. The double Pareto-lognormal 

distribution (DPLN) has recently been shown to accurately model the empirical 

distributions of the degree, call volume and number of calls in a mobile phone network 

[6]. Finally, X  follows a log-skew-normal distribution (LSN) [7] if Y = lnX  obeys a 

skew-normal distribution 

 

,  (S2) 

 

where ,  and  are the location, scale and shape parameters, respectively. To 

simplify the interpretation the ‘direct parameters’ ( , , ) can be transformed into the 

‘centred parameters’ ( , , ) where ,  and  denotes the 

skewness of the distribution [8]. By allowing for non-zero skewness, equation (S2) 

constitutes a generalisation of the normal distribution. 
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Tables S7-S9 indicate how many times each distribution has outperformed all other 

models in terms of the log-likelihood function and the BIC (REC network,  

ΔT = 409  days, = 1/[90 days]). The two Larger Urban Zones located on the 

archipelagos (Ponta Delgada and Funchal) are not considered due to a substantially lower 

market share (  for the homogeneous set of callers). For the call volume, we 

further discarded 1 Statistical City to which only 4 regularly active callers were assigned. 

The log-skew-normal distribution is in most cases the best model for the degree 

distribution, as there remains a slight right-skewness even when considering only 

regularly active callers. In particular, equation (S2) provides an excellent fit for the right 

tail of the distribution (figure S5). Generally, right-skewness can be explained by a 

‘hidden’ constraint on small values (or lower truncation) of otherwise normally 

distributed observations [9]; we intend to elaborate on this point in future work. The BIC 

favours the lognormal distribution for both the call volume and number of calls. 

 
Clustering coefficient – comparison to the random case and regression analysis 

In an Erdős-Rényi random network with the same number of nodes | S |= sN  and same 

average degree k  as in the studied cities, the expected clustering coefficient is 

C ER = k / | S |  [10]. Given the superlinear scaling relation we observed for the number 

of contacts, the value of C ER  can be expected to vary with city population size as 

 
C ER =

k
| S |

N β−1

N
 N γ ER , γ ER = β − 2 . (S3) 

With β ≈1.12  (see table 1 in the main text) the expected value of the exponent is 

γ ER ≈ −0.88 . Thus, the average clustering coefficient in the corresponding Erdős-Rényi 

network would decrease rapidly with increasing city size. For a comparison with the real 

data, we performed a regression analysis on the studied communication networks. In 

contrast to the Erdős-Rényi random network, we find that the clustering coefficient 

remains largely unaffected by city size, with Adj-R2 values of the regression analysis 

being very low and values of γ  being very close to 0 for all different city definitions, see 

figure S7. 

fmin
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Weighted clustering coefficients 

The standard clustering coefficient does not consider the weights of the links in terms of 

the accumulated call volume and number of calls between two individuals. Hence, to 

assess the influence of the weights, we also computed for each caller i  the weighted 

clustering coefficient according to ref. [11], 

 
Ci =

1
ki (ki −1)

1
max(w)

(wijwikwjk )jk∑ 1/3

, (S4) 

where the weight wij  is either the accumulated number of calls or the accumulated call 

duration between callers i  and j . This weighted clustering coefficient is a natural 

generalisation of the standard unweighted coefficient (notice that in the simple case 

w = 1 ,  C = C ). We find that the weighted clustering coefficients for both the number of 

calls and the call duration, averaged over all callers in a given city, are largely invariant 

of city size in both Portugal and UK, see figure S8 and table S10, which confirms the 

behaviour of the standard clustering coefficient. Moreover, in case of Portugal’s mobile 

phone network, the average values do not strongly depend on the particular city 

definition. 

 
Degree-degree correlations 

To quantify degree-degree correlations in the analysed networks, we computed the 

average degree knn (k)  of the nearest-neighbours of nodes having degree k , which is 

one of the most widely used measures, see ref. [10]. If knn (k)  is an increasing function 

of k , the nodes tend to be connected to other nodes with similar degree, corresponding to 

assortative (or positive) degree-degree correlations. As depicted in figure S9, Portugal’s 

mobile phone network indeed exhibits assortative degree-degree correlations, with 

 ln knn (k)  ln(k)  being valid for a wide range of values of k  (the linear regression has 

an Adj-R2 = 0.99 for k <100, which accounts for 99.8% of the nodes). This relation 

indicates a strong tendency of a node to connect to other nodes with degree of similar 

magnitude. In contrast, the landline network in the UK does not exhibit such a clear 

positive correlation between k  and knn (k) .  
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(2) Supplementary Figures 

 

Figure S1: Population size distribution for the urban units in Portugal and relative 

number of assigned callers. (a-c) Zipf plots for Statistical Cities (a), Larger Urban Zones 

(b) and Municipalities (c). (d-f) Corresponding mobile phone coverage resulting from the 

node assignment procedure (REC network, ΔT = 409 days). The solid lines show the 

linear regressions with slopes -0.03 ± 0.16 (95% CI, Adj-R2 = -0.01) for the Statistical 

Cities (d), 0.55 ± 1.28 (95% CI, Adj-R2 = 0.004) for the Larger Urban Zones (e) and  

0.13 ± 0.11 (95% CI, Adj-R2 = 0.01) for the Municipalities (f).  
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Figure S2. City size distribution for the UK and relative number of landline phones. (a) 

Zipf (rank-size) plot for the population of the Urban Audit Cities. (b) Corresponding 

landline phone coverage. The solid line corresponds to the average value. 

 

 

 

 

 

 

 

 

 

 

Figure S3. Cumulative distributions of the tie strength (link weights) in terms of the 

accumulated number of calls wω  (squares), and accumulated call volume wν  in seconds 

(circles) between each pair of callers, for the REC network in Portugal with 

= 409 days. 
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Figure S4. Increasing the homogeneity of the interaction distributions. (a) Degree 

distribution for the REC network in Portugal ( = 409 days). To highlight the tail 

behaviour we show the probabilities on a logarithmic scale. (b,c) corresponding 

distribution of the call volume and number of calls. When considering all callers (black 

circles) the distributions are strongly left-skewed. Considering only callers whose call 

frequency is higher than = 1/[90 days] (green triangles) and = 1/[30 days] (blue 

squares) gradually decreases the skewness. Most notably for  and , the 

homogenised data increasingly resemble the Gaussian bell curve (i.e., a lognormal 

distribution in the original variables). The inset in (b) depicts the decrease of the average 

skewness (third standardised moment), , for all Statistical Cities with increasing , 

and the corresponding fraction of regularly active callers,
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Figure S5. Degree distribution. Black circles: distribution of the regularly active callers 

in Portugal (REC network, = 409 days, = 1/[90 days]). The continuous lines are 

best fits of the lognormal (red), generalised Pareto (yellow), double Pareto-lognormal 

(green) and log-skew-normal model (blue). 

 

 

 

 

 

 

 

 

Figure S6. Degree distribution for the city with the highest coverage. Black circles: 

distribution of the regularly active callers (REC network, ΔT = 409 days,  

= 1/[90 days]). The Statistical City has N = 17,535  inhabitants and a total of  

| S |  = 12,304 assigned callers, resulting in s = 0.70 . The continuous lines are as in  

figure S5. The best fits of the lognormal and log-skew-normal model coincide and 

outperform the other distributions, in agreement with the behaviour for the average 

coverage of s ≈ 0.20  (table S7).  
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Figure S7. Regression analysis on the average clustering coefficients. Black crosses are 

the values of C  versus city size for the different city definition as used in the main text. 

Red lines show the best linear regression, ln C =α + γ lnN . The values for the slopes 

and the corresponding 95% confidence interval are γ = 0.023 [0.018, 0.027] for the 

Statistical Cities, γ = -0.002 [-0.004, 0.001] for the Municipalities and γ = -0.033  

[-0.039, -0.027] for the Larger Urban Zones in Portugal (REC network, ΔT = 409 days), 

and 0.019 [0.016, 0.021] for the Urban Audit Cities in the UK. For all fits Adj-R2 < 0.1 .  
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Figure S8. Average weighted clustering coefficients based on the call duration, C duration  

(left), and based on the number of calls, C number  (right), for Portugal (REC network, 

ΔT = 409 days) and UK, with symbols according to figure 3 in the main text. The lines 

correspond to the averages of the different city definitions, values are reported in table 

S10. Grey points are the underlying scatter plot for all urban units. 

 

 

 

 

 

 

 

 
 
Figure S9. Average nearest-neighbour degree as a function of the nodal degree,  

knn (k) . For Portugal (REC network, ΔT = 409 days), the value varies like 

ln knn (k) =α + γ ln k  (γ ≈ 0.4 , Adj-R2 = 0.99) for low values of k  ( k <100 , accounting 

for 99.8% of all nodes).  
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Figure S10. (a) The number of infected nodes as a function of the simulation time t for 

the examples of Lisbon (STC, with N=564,657 and | S |=109,448, blue circles), and 

Meda (STC, with N=2193, | S |=1033), averaged over 100 simulation runs (REC 

network, ΔT = 409 days). Both urban units lie very close to the regression line in figure 

4a of the main text. The spreading is substantially faster in Lisbon. The continuous line 

indicates the stopping criterion for estimating R (i.e., when nI = 100 nodes were 

infected). (b) Histogram of the single values of the spreading speed, Rκ = nI / tκ (nI )  (see 

main text), resulting from each of the 100 individual simulation runs for Meda and (c) for 

Lisbon. 
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Figure S11. Spreading speed R for the Statistical Cities in Portugal based on the 

unweighted reciprocal network (REC network, ΔT = 409 days). The spreading model has 

been implemented as for the weighted case (see main text), with the only difference that 

instead of the weight-dependent transmission probability, we used a fixed value 

Pij = 0.01 . The solid line is the best fit to a power law scaling relation R ∝ N δ  with 

exponent δ = 0.12 ± 0.04  (95% CI, Adj-R2 = 0.22).  
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FIG. 4. Larger cities facilitate interaction-based spreading processes. (a) Spreading speed, R,

averaged over 100 simulation trials of the SI model for each Statistical City in Portugal (circles),

with nodal infection rate � = 0.01 and nI = 100 infected nodes. The solid line is the best fit

to a power-law scaling relation R ⌥ N �, with � = 0.12 ± 0.04 (95% CI, Adj-R2 = 0.22). (b)

Corresponding simulation results for the Municipalities in Portugal. The line describes the best fit

with � = 0.14± 0.03 (95% CI, Adj-R2 = 0.25). Inset: association between R, as predicted by the

power-law relation, and the number of HIV/AIDS cases per capita, y, for 14 Municipalities during

the period of 2002 to 2010. The solid line shows the linear regression of the log-transformed data

with slope 3.56± 2.32 (95% CI, Adj-R2 = 0.44).
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(3) Supplementary Tables 

Network 
type 

 [days]
 n m 

 
 

[hours] 
 

LCC 

REC 
409 1,589,511 6,770,405 8.52 12.03  498.56 0.98 

92 1,087,722 2,867,400 5.27 5.54  158.03 0.93 

nREC 409 1,802,802 11,354,604 12.60 17.22  473.85 0.99 

Table S1. Summary statistics for the mobile phone networks in Portugal. The size of the 

largest connected component (LCC) is given as a fraction of the total number of nodes. 

All networks are considered as being undirected, so that the LCC for the nREC network 

corresponds to the giant weakly connected component (GWCC). The values for the 

number of nodes n , number of links m , average degree , average call volume  

and average number of calls  correspond to those of the LCC. The distribution of the 

tie strengths is shown in figure S3. 

 

City definition No. of entities    
Statistical Cities 

(STC) 

140 4,032,176 1,960 564,657 
Municipalities 

(MUN) 

293 9,901,216 1,924 564,657 
Larger Urban Zones 

(LUZ) 

9 4,566,630 108,891 2,363,470 

Table S2. Population statistics of the analysed urban units in Portugal for the year 2001. 

For each city definition we show the total population covered, , as well as the 

population size of the smallest ( ) and largest ( ) entity. 

 
Network 
type 

  
  

 
[hours] 

 
LCC 

REC 47,072,811 119,725,827 24,054,946 7.97 6.61 102.1

2 

0.99 

Table S3. Summary statistics of the UK communication network. The number of nodes  

( ) and number of links ( ) correspond to the LCC of the overall network 

(including mobile phones connected to landlines). All other values correspond to the 

landlines only (including their links to mobile phones). The network is undirected. 

ΔT k ν ω

k ν

ω

N tot Nmin Nmax

N tot

Nmin Nmax

n tot m tot nland k land ν land ω land

n tot m tot
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City definition No. of entities    

Urban Audit Cities 

(UAC) 

24 14,186,179 79,734 7,172,091 

Table S4. Population statistics of the analysed urban system in the UK for the year 2001. 

The variables are defined as in table S2. 

 

smin 
Number of 

Municipalities 
with s > smin 

γ  
β  

Kr Vr Wr 

0 293 0.13  
[0.02, 0.24] 

1.13  
[1.11, 1.14] 

1.15 
[1.13, 1.17] 

1.13 
[1.11, 1.14] 

0.01 279 0.10 
[0.02, 0.19] 

1.13 
[1.11, 1.15] 

1.16 
[1.14, 1.18] 

1.13 
[1.11, 1.14] 

0.02 271 0.06 
[-0.02, 0.14] 

1.13 
[1.11, 1.15] 

1.16 
[1.14, 1.18] 

1.13 
[1.11, 1.14] 

0.03 265 0.05 
[-0.03, 0.12] 

1.12 
[1.11, 1.14] 

1.16 
[1.14, 1.18] 

1.13 
[1.11, 1.15] 

0.04 260 0.03 
[-0.04, 0.10] 

1.13 
[1.11, 1.14] 

1.16 
[1.14, 1.18] 

1.13 
[1.11, 1.15] 

0.05 251 0.02 
[-0.05, 0.09] 

1.12 
[1.11, 1.14] 

1.16 
[1.14, 1.18] 

1.13 
[1.11, 1.15] 

0.06 236 -0.01 
[-0.07, 0.06] 

1.12 
[1.10, 1.14] 

1.17 
[1.14, 1.19] 

1.13 
[1.11, 1.15] 

Table S5. Effect of filtering out Municipalities with a coverage lower than smin  on the 

slope of the linear regression ln(s) =α + γ ln(N )  and on the scaling exponent β  for the 

interaction indicators (Kr ,Vr ,Wr ) according to table 1 in the main text (REC network, 

ΔT = 409 days). The number in the square brackets indicate the 95% confidence interval. 

The slope γ  of the best linear fit systematically decreases with increasing value of smin , 

indicating that the dependence of the coverage on the population size vanishes for the 

majority of Municipalities that have higher values of s . In contrast, the superlinear 

scaling of the interaction indicators remains largely unaffected. This result shows that the 

positive relation between population size and coverage is introduced by a small number 

of Municipalities with lowest coverage. It thus further excludes the possibility that the 

superlinear scaling as reported in the main text is the result of an increasing number of 

subscribers in larger Municipalities.  

N tot Nmin Nmax
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Caller network   95% CI 

reciprocal 

Degree 1.10 [1.09, 1.11] 

Call volume 1.13 [1.11, 1.14] 

Number of calls 1.10 [1.09, 1.12] 

non-reciprocal 

Degree 1.20 [1.18, 1.22] 

Call volume 1.15 [1.13, 1.17] 

Number of calls	   1.13	   [1.11, 1.14]	  

Table S6. Resulting exponents of the scaling relations based on the number of callers. 

The values are shown for the Statistical Cities in Portugal (ΔT = 409 days). Exponents 

were estimated by nonlinear least squares (trust-region algorithm). 
 
 

   Distribution model 
City definition No. of 

entities 
Statistical 
method LN GP DPLN LSN 

Statistical Cities 140 ln L 0 0 52 88 
 BIC 50 1 20 69 
Larger Urban 
Zones 7 ln L 0 0 5 2 

BIC 0 0 3 4 
Municipalities 293 ln L 1 1 116 175 
 BIC 142 5 15 131 

All types 440 ln L 1 1 173 265 
BIC 192 6 38 204 

Table S7. Model selection for the degree distribution by the ‘goodness of the fit’ (REC 

network, = 409 days, = 1/[90 days]). The numbers indicate how many times each 

distribution has been selected based on the maximum value of the log-likelihood function 

( ) and the BIC, respectively.  

Y γ

ΔT fmin

lnL
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	   	   	   Distribution	  model	  

City	  definition	   No.	  of	  
entities	  

Statistical	  
method	   LN	   GP	   DPLN	   LSN	  

Statistical	  
Cities	   139	   ln	  L	   0	   0	   32	   107	  

BIC	   91	   7	   6	   35	  
Larger	  Urban	  
Zones	   7	   ln	  L	   0	   0	   1	   6	  

BIC	   2	   0	   0	   5	  

Municipalities	   293	   ln	  L	   0	   0	   86	   207	  
BIC	   225	   13	   3	   52	  

All	  types	   439	   ln	  L	   0	   0	   119	   320	  
BIC	   318	   20	   9	   92	  

Table S8. Model selection for the distribution of the call volume. 
 
 

	   	   	   Distribution	  model	  
City	  definition	   No.	  of	  

entities	  
Statistical	  
method	   LN	   GP	   DPLN	   LSN	  

Statistical	  
Cities	   140	   	   ln	  L	   0	   0	   29	   111	  

BIC	   53	   4	   8	   75	  
Larger	  Urban	  
Zones	   7	   ln	  L	   0	   0	   0	   7	  

BIC	   0	   0	   0	   7	  

Municipalities	   293	   ln	  L	   0	   2	   89	   202	  
BIC	   170	   13	   6	   104	  

All	  types	   440	   ln	  L	   0	   2	   118	   320	  
BIC	   223	   17	   14	   186	  

Table S9. Model selection for the distribution of the number of calls. 
 

 
City definition 

 

C number  C duration  

PT - Statistical Cities (4.8±1.3)×10-5 (1.23±0.24)×10-6 

PT - Municipalities (4.5±1.4)×10-5 

 

(1.17±0.27)×10-6 

 PT – Larger Urban Zones (5.0±1.1)×10-5 (1.25±0.19)×10-6 

 UK - Urban Audit Cities (7.1±0.4)×10-4 

 

(3.52±0.29)×10-6 

 Table S10. Weighted averages and standard deviations of the weighted clustering 

coefficients (see figure S8) for the different city definitions.  
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