
Supplementary material: Further details of the numerical method

The flow considered here is governed by the three-dimensional, viscous incompressible momen-

tum equation and the continuity equation,

∂ui

∂t
+

∂ujui

∂xj

= −

1

ρ

∂p

∂xi

+ ν
∂2ui

∂x2
j

,

∂ui

∂xi

= 0, (1)

where ui is the velocity, ρ and ν are the constant density and viscosity, and p is the pressure.

The governing equations are discretized on a nonuniform Cartesian grid using a cell-centered, non-

staggering arrangement of the primitive variables, ui and p.

The Cartesian grid covers the entire computational domain, including both the fluid region

and the solid body. A standard second-order central difference scheme is used to discretize all the

spatial derivatives at the nodes located in the bulk flow region. The incompressible momentum

equation is integrated in time using a variation of Chorin’s projection method which consists of

three sub-steps. In the first sub-step, an advection–diffusion equation is solved in the absence of

the pressure, and an intermediate velocity field, u∗

i , is obtained. In this step, both the nonlinear

advection terms and the viscous terms are discretized using the Crank–Nicolson scheme to improve

the numerical stability. The discrete equation is written as

u∗

i − un
i

∆t
+

1

2

[

δ(Ujui)
∗

δxj
+

δ(Ujui)
n

δxj

]

=
ν

2

[

δ

δxj

(

δu∗

i

δxj

)

+
δ

δxj

(

δun
i

δxj

)]

, (2)

where Uj is the velocity discretized at the face center of a computational cell, and δ
δxj

represents a

finite-difference approximation of the spatial derivative using a second-order central scheme. The

three components of the face-centered velocity, Uj , is obtained by computing the linear average

of uj along the j-direction. The nonlinear algebraic system is solved by a successive substitution

approach. That is, the system (2) is first linearized with U∗

j computed from available u∗

i and held

constant, and then the entire linear system is iterated for once using the Gauss–Seidel method

before U∗

j is updated for the next iteration.

In the second sub-step, a projection function is solved as an approximation of the pressure,

δ

δxj

(

δpn+1

δxj

)

=
ρ

∆t

δU∗

j

δxj
, (3)

and an inhomogeneous Neumann boundary condition is imposed at all boundaries. The special

treatment at the immersed fluid–solid boundary will be discussed in next sub-section. The Poisson

equation (3) is solved with a parallel sparse matrix solver, Aztec. Once the pressure is obtained,

the cell-centered velocity is updated as

un+1

i = u∗

i −
∆t

ρ

δpn+1

δxi

, (4)

and the final face-centered velocity, Un+1

i , is updated by averaging un+1

i along the j-direction.

The fluid-solid interface is represented by a set of Lagrangian marker points and 3-node tri-

angular elements. To implement the boundary conditions at the interface, “ghost nodes” outside

1



the fluid region are defined at each time step, at which the flow variables are extrapolated [1, 2].

To suppress the numerical oscillations that may happen when solving a moving-boundary problem,

“hybrid nodes” are defined inside the fluid region, at which the flow variables are weighted averages

between the interpolated solution and the solution to the Navier–Stokes equations.

References

[1] R. Mittal, H. Dong, M. Bozkurttas, F. M. Najjar, A. Vargas, and A. vonLoebbeck. A versatile

sharp interface immersed boundary method for incompressible flows with complex boundaries.

J. Comput. Phys., 227(10), 2008. 4825-4852.

[2] H. Luo, H. Dai, P. Ferreira de Sousa, and B. Yin. On numerical oscillation of the direct-forcing

immersed-boundary method for moving boundaries. Comput. & Fluids, 56:61–76, 2012.

2


