Supplementary material: Further details of the numerical method

The flow considered here is governed by the three-dimensional, viscous incompressible momen-
tum equation and the continuity equation,
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where u; is the velocity, p and v are the constant density and viscosity, and p is the pressure.
The governing equations are discretized on a nonuniform Cartesian grid using a cell-centered, non-
staggering arrangement of the primitive variables, u; and p.

The Cartesian grid covers the entire computational domain, including both the fluid region
and the solid body. A standard second-order central difference scheme is used to discretize all the
spatial derivatives at the nodes located in the bulk flow region. The incompressible momentum
equation is integrated in time using a variation of Chorin’s projection method which consists of
three sub-steps. In the first sub-step, an advection—diffusion equation is solved in the absence of
the pressure, and an intermediate velocity field, u;, is obtained. In this step, both the nonlinear
advection terms and the viscous terms are discretized using the Crank—Nicolson scheme to improve
the numerical stability. The discrete equation is written as
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where Uj is the velocity discretized at the face center of a computational cell, and % represents a
finite-difference approximation of the spatial derivative using a second-order central scheme. The
three components of the face-centered velocity, Uj;, is obtained by computing the linear average
of u; along the j-direction. The nonlinear algebraic system is solved by a successive substitution
approach. That is, the system (2) is first linearized with U computed from available u; and held
constant, and then the entire linear system is iterated for once using the Gauss—Seidel method
before Ur is updated for the next iteration.
In the second sub-step, a projection function is solved as an approximation of the pressure,
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and an inhomogeneous Neumann boundary condition is imposed at all boundaries. The special
treatment at the immersed fluid—solid boundary will be discussed in next sub-section. The Poisson
equation (3) is solved with a parallel sparse matrix solver, Aztec. Once the pressure is obtained,
the cell-centered velocity is updated as
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and the final face-centered velocity, Ui"“, is updated by averaging U?H along the j-direction.
The fluid-solid interface is represented by a set of Lagrangian marker points and 3-node tri-

angular elements. To implement the boundary conditions at the interface, “ghost nodes” outside



the fluid region are defined at each time step, at which the flow variables are extrapolated [1, 2].
To suppress the numerical oscillations that may happen when solving a moving-boundary problem,
“hybrid nodes” are defined inside the fluid region, at which the flow variables are weighted averages
between the interpolated solution and the solution to the Navier—Stokes equations.
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