

Supp. Figure S1. MLPA analysis of KMT2D gene. (A) Deletion of exon 49 was detected in the KB43 patient. (B) The electropherogram showing the boundaries of the deletion c.15785-238_16168del2425. An insertion of 10 nucleotides, TTGTATCTCAA, was identified between intron 48-49 and exon 51 (highlighted in black).

Supp. Figure S2

Supp. Figure S2. Schematic representation of KMT2D splicing mutations and their effect on cDNA patients. The electropherograms showing the KMT2D splicing heterozygous mutations in Kabuki patients are reported. RT-PCR analysis on cDNA from Kabuki patients and control (wt: wild type) are showed. Agarose gel images of PCR products showed both normal and aberrant spliced products. Patient cDNAs were used as templates for PCR amplifications in the regions displaying splicing mutations. See text for additional details.

Supp. Figure S3

E

Normal control cDNA reverse

KB186 cDNA without puromycin reverse

KB186 cDNA with puromycin reverse

Normal control cDNA forward

KB186 cDNA without puromycin forward

KB186 cDNA with puromycin forward

A Ð <u>G</u>] <u>C</u> 0 T A 0 1 <u>0</u> 0 ۵ ß G Ē G ð G Ð Ð R Я <u>C</u> <u>G</u> <u>G</u> <u>G</u> <u>C</u> G G G G £ <u>C</u> G A Â ſ A G Α <u>G</u> <u>G</u> <u>G</u> <u>G</u> G A A G CA C A C <u>A</u> C C G G G A С G G G G G ſ Y G С G <u>С</u> G C Δ A С G G A

Supp. Figure S3

Normal control cDNA reverse

KB3 cDNA without puromycin reverse

KB3 cDNA with puromycin reverse

Normal control cDNA forward

KB3 cDNA without puromycin forward

KB3 cDNA with puromycin forward

Supp. Figure S3. KMT2D mutations are regulated by NMD. (**A-D**) The mRNA levels of KMT2D in 3 KS-fibroblast and 4 KS-lymphoblastoid cell lines following treatment with puromycin (200ug/ml for 8 hours) were detected by using qPCR. The physiological NMD substrate SC-35 1.7 Kb was included as positive control.* P value<0.05. (**E-G**) In the presence of puromycin, the KMT2D mutant alleles (c.9961C>T, KB186 (**E**), c.7903C>T, KB153 (**F**); and c.5652dup, KB3 (**G**)) were restored. Without puromycin the mutant alleles were observed at a lower level than the wild type allele.

Mutation Type	ID	Exon/ Intron	Mutation	AA change	Inheritance	Reference
Patients with KM	AT2D mutations					
Nonsense	KB49	5	c.669T>G	p.Tyr223X	NA	4,#
	KB33 VD22	10	c.1921G>1 a 4410G> A	p.Glub41X	INA NA	4,#
	KB55 KB63	10	C.4419G>A c.4895delC	p.1rp14/3X p.Ser1632X	NA NA	4, # 4 #
	KB317	22	c.5212G>T	p.Glu1738X	NA	This Study
	KB262	26	c.5674C>T	p.Gln1892X	NA	This Study
	KB26	31	c.6295 C>T	p.Arg2099X	NA	1, 4, #
	KB66	31	c.7246C>T	p.Gln2416X	NA	4,#
	KB59	31	c.7903C>T	p.Arg2635X	de novo	4,#
	KB155, KB220 KB109	31	c./903C>1	p.Arg2035A	de novo, de novo	4 Thic Study
	KB323	33	c.8311C>T	n Arg2771X	NA	2.7
	KB289	34	c.8743C>T	p.Arg2915X	NA	3
	KB186	34	c.9961C>T	p.Arg3321X	de novo	1, 5, 7
	KB56	34	c.10135C>T	p.Gln3379X	de novo	4,#
	KB168	39	c.10750C>T	p.Gln3584X	de novo	This Study
	KB40 VD41 VD44	39	c.10841C>G	p.Ser3014X	de novo	4,#
	KB41, KB44 KB42	39	c.11269C>T	p.Gln3757X	de novo	4,#
	KB25	39	c.11434C>T	p.Gln3812X	NA	4, #
	KB244	39	c.11674C>T	p.Gln3892X	NA	7
	KB178	39	c.11704C>T	p.Gln3902X	NA	This Study
	KB181	39	c.11869C>T	p.Gln3957X	NA	This Study
	KB65 KB40	39	c.120/6C>1	p.GIn4026X	NA NA	4,#
	KB40 KB114	39	c.12274C>T	p.Gin4092X	de novo	4, # 4
	KB82	39	c.12844C>T	p.Arg4282X	de novo	This Study
	KB189	39	c.12955A>T	p.Arg4319X	de novo	This Study
	KB183	39	c.13450C>T	p.Arg4484X	de novo	2,9
	KB175	39	c.13507C>T	p.Gln4503X	de novo	This Study
	KB73 KB83	40 48	c.13000A>T c.15022C>T	p.Lys4556X	de novo	4, # This Study
	KB45 KB72	40	c.15022G>1	p.Gu5008A	NA NA	2 4 #
	KB130	52	c.16360C>T	p.Arg5454X	NA	1, 2, 5
Frameshift	KB75	4	c.472delT	p.Cys158ValfsX50	NA	4,#
	KB8	5	c.588delC	p.Cys197AlafsX11	NA	9
	KB58	6	c.705delA	p.Glu237SerfsX24	NA	4,#
	KB57 KB89	8 10	c.1035_1030delC1 c.1345_1346delCT	p.Cys540SerisA17 p.Leu449ValfsX5	NA NA	4, #, 0* 4 #
	KB156	10	c.1503dupT	p.Pro502SerfsX7	de novo	This Study
	KB116	10	c.1634delT	p.Leu545ArgfsX385	NA	7
	KB48	11	c.2993dupC	p.Met999TyrfsX69	de novo	4,#
	KB203	11	c.3161_3171delCGTTGAGTCCC	p.Pro1054HisfsX10	NA	This Study
	KB309 KB142	11	c.3/30delG	p. val1244SerISX86	NA do novo	This Study
	KB311	13	C.40210eff c 4135 4136delAT	p. val1341Leuisx35 n Met1379ValfsX52	de novo NA	This Study This Study
	KB188	16	c.4454delC	p.Pro1485LeufsX21	de novo	This Study
	KB159	19	c.4896_4905delAGATGCCCTT	p.Asp1633AlafsX86	NA	This Study
	KB3	26	c.5652dupC	p.Lys1885GlnfsX18	NA	9,#
	KB84	26	c.5779delC	p.Gln1927LystsX120	NA do novo	4, # This Study
	KB208	27	c.5857delC	n Thr1985LysfsX62	de novo	This Study
	KB221	29	c.6149 6150delGA	p.Arg2050LysisX6	de novo	This Study
	KB152	31	c.6583delA	p.Thr2195ProfsX69	de novo	This Study
	KB267	31	c.6594delC	p.Tyr2199IlefsX65	NA	5
	KB79, KB102	31	c.6595delT	p.Tyr2199IlefsX65	de novo, de novo	1, 3, 4, 5, 7, #
	кв0/ КВ176	31 31	0.0056_004100UGU	p.G1y2213AlaISX50	ue novo NA	4, # This Study
	KB253	31	c.6794delG	p.Gly2265GlufsX21	NA	This Study
	KB278	31	c.7481dupT	p.Ala2496SerfsX10	NA	This Study
	KB313	32	c.8196delG	p.Ser2733ValfsX24	NA	This Study
	KB80	33	c.8273delG	p.Gly2758AlafsX29	NA	4,#
	KB243 KD182	54 24	c.8430_8431insAA o 9203dolA	p.Gin2811AsnfsX41 p.Cin2068ClyfsX2	de novo NA	This Study
	KB102 KB30	38	c.10606delC	p.Arg3536AlafsX122	NA	4. #
	KB101	39	c.11066_11078delCTGGATCCCTGGC	p.Ala3689ValfsX56	de novo	4,#
	KB172	39	c.12647delC	p.Pro4216LeufsX62	NA	This Study
	KB192	39	c.12966delA	p.Gln4322HisfsX62	de novo	This Study
	KB54	39	c.13129dupT	p.Trp4377LeufsX33	NA	4,#
	KB121 KB123	39 42	c.1327/dupT c.13884dupC	p.Ala4428SerfsX59 p.Thr4620HiefV19	de novo de novo	This Study This Study
	KB125 KB197	42 47	c.14592dunG	p.11140271181A10 n.Pro4865AlafsX48	de novo	This Study
	KB125	48	c.15031delG	p.Glu5011SerfsX40	NA	This Study
	KB 43 ^{&}	49-51	c.15785-238_16168del2425insTTGTATCTAA		NA	This Study
	KB64	53	c.16469_16470delAA	p.Lys5490ArgfsX21	NA	4,#
Indels	KB10 KB274	48 10	c.155/4dup1 ^	p.iviet512411etsX14	ae novo NA	9, # This Study
mucis	KB281	39	c.11714 11716dupAGC	p.A1go45_170004001 p.Gln3905dup	Maternal	This Study
	KB71	39	c.11819_11836dup18	p.Leu3940_Gln3945dup	Maternal	4, #
	KB227	39	c.11843_11860del18	p.Leu3948_Gln3953del	Paternal	This Study
	KB228	39	c.11854_11874dup21	p.Gln3952_Gln3958dup	Paternal	This Study
	КВ// КВ53	48 53	c.15103_15108dupGACCTG c.16489_16491deLATC	p.Asp5055_Leu5056dup	INA NA	4,# 47#
Missense	KB21	3	c.346T>C	p.Ser116Pro	Maternal	This Study
	KB21	4	c.510G>C	p.Gln170His	Maternal	9#
	KB256	5	c.626C>T	p.Thr209Ile	NA	This Study
	KB269	10	c.1940C>A	p.Pro647Gln	Maternal	3 This Student
	кв215 КВ283	11 11	c.3594C>1 c.3524C>T	p.rro1151Leu n.Thr1175Ile	NA	1 nis Study This Study
ļ		**		Primitizine	- **	- mo orany

Supp. Table S1. KMT2D and KDM6A mutations identified in our cohort of Kabuki patients

Mutation Type	ID	Exon/ Intron	Mutation	AA change	Inheritance	Reference
	KB222	11	c.3572C>T	p.Pro1191Leu	Paternal	This Study
	KB32	11	c.3773 G>A	p.Arg1258Gln	Paternal	4,#
	KB307	14	c.4171G>A	p.Glu1391Lys	NA	This Study
	KB28	15	c.[4249A>G; 4252C>A]	p.[Met1417Val; Leu1418Met]	Maternal	4,#
	KB174	15	c.4283T>C	p.Ile1428Thr	Maternal	This Study
	KB138	16	c.4427C>G	p.Ser1476Cys	NA	This Study
	KB34	16	c.4565 A>G	p.Gln1522Arg	Paternal	4,#
	KB177	22	c.5226G>C	p.Glu1742Asp	NA	This Study
	KB119, KB204	31	c.6638 G>A	p.Gly2213Asp	Maternal, Maternal	This Study
	KB326	31	c.6811C>T	p.Pro2271Ser	NA	This Study
	KB107	31	c.6970C>A	p.Pro2324Thr	NA	This Study
	KB122	31	c.7829T>C	p.Leu2610Pro	Maternal	6*
	KB27	34	c.8521 C>A	p.Pro2841Thr	NA	4,#
	KB326	34	c.10192A>G	p.Met3398Val	NA	This Study
	KB292	37	c.10499G>T	p.Gly3500Val	de novo	This Study
	KB86	39	c.10966C>T	p.Arg3656Cys	NA	This Study
	KB293	39	c.11794C>G	p.Gln3932Glu	NA	This Study
	KB204	39	c.12070A>G	p.Lys4024Glu	Paternal	This Study
	KB247	39	c.12485G>A	p.Arg4162Gln	NA	This Study
	KB107	39	c.12488C>T	p.Pro4163Leu	NA	This Study
	KB170	39	c.13256C>T	p.Pro4419Leu	Maternal	This Study
	KB86	48	c.14893G>A	p.Ala4965Thr	NA	This Study
	KB38	48	c.[15084C>G; 15100 T>G]	p.[Asp5028Glu: Phe5034Val]	de novo	4.#
	KB154, KB185	48	c.15088C>T	p.Arg5030Cvs	de novo	9
	KB76	48	c.15176A>C	p.His5059Pro	de novo	4,#
	KB129	48	c.15292A>C	p.Thr5098Pro	NA	This Study
	KB171	48	c.15565G>A	p.Glv5189Arg	Maternal	11
	KB264	48	c.15640C>T	p.Arg5214Cvs	NA	5.7.9
	KB24, KB219	48	c.15641G>A	p.Arg5214His	de novo. NA	1.5
	KB109	48	c.15649T>C	p.Trp5217Arg	de novo	This Study
	KB17	50	c.16019 G>A	p.Arg5340Gln	de novo	4.#
	KB169	51	c.16273G>A	p.Glu5425Lvs	de novo	This Study
	KB90	51	c.16295G>A	p.Arg5432Gln	NA	8
	KB177	52	c.16412G>T	p.Arg5471Met	NA	This Study
	KB120	54	c.16528T>G	p.Tvr5510Asp	de novo	This Study
Splice-site	KB286	int 2-3	c.177-2A>C, r.177 400del224	p.Ser59ArgfsX86	de novo	This Study
	KB31	int 3-4	c.400+1G>A, r.177 400del224	p.Ser59ArgfsX86	NA	4.#
	KB20	int 3-4	c.401-3A>G, r.400 401insAG	p.Glv134GlufsX75	de novo	4.#
	KB210	int 17-18	c.4693+1G>A, r.4681 4693del GTAAAGCCTGTGG	p.Val1561ArgfsX11	de novo	10. #
	KB29	int 42-43	c.13999+5G>A, r.13840 13999del160	p.Asn4614IlefsX5	NA	2, 4, 7, #
	KB7	int 44-45	c.14252-6 14252-5insGAAA, r.14252 14382del131	p.Val4751 GlufsX22	de novo	9, #
	KB290	int 47-48	c.14643+1G>A, r.14644 14875del232	p.Glu4882ProfsX36	de novo	This Study
	KB195	int 47-48	c.14644-3C>G, r.14644 14875del232	p.Gln4882ProfsX36	de novo	This Study
Patients with KI	OM6A mutations					
Nonsense	KB215	6	c.514C>T	p.Arg172X	de novo	12
Frameshift	KB39	16	c.1846 1849delACTC	p.Thr616TyrfsX8	NA	This Study
Missense	KB131	20	c.2939A>T	p.Asp980Val	NA	This Study
Splice-Site	KB127	int 22-23	c.3284+3_3284+6delAAGT, r.3210_3284del75	p.Asn1070_Lys1094del	de novo	This Study
-				•		•

Supp.	Table	S2.	In	silico	prediction	of	pathogenic	effect	of	KMT2D [#]	and	KDM6A	missense
varian	ts												

ID	Exon	Inheritance	AA change	POLYP	HEN	UMD-predicto	r	ALIGN GVGD [§]	PROVEAN	SIFT
				prediction	score	prediction	score		cutoff=-2.5	cutoff=0.05
KMT2D	mutations									
KB21	4	inherited (M)	p.Gln170His	Damaging	0.998	Polymorphism	35	Class C0	Neutral	Damaging
KB256	5	NA	p.Thr209Ile	Benign	0.096	Probably Polymorphism	59	Class C0	Neutral	Damaging
KB269	10	inherited (M)	p.Pro647Gln	Damaging	0.855	Probably Pathogenic	66	Class C0	Neutral	Tolerated
KB215	11	inherited (M)	p.Pro1131Leu	Benign	0.196	Probably Polymorphism	51	Class C0	Neutral	Damaging
KB283	11	NA	p.Thr1175Ile	Benign	0.022	Probably Polymorphism	59	Class C0	Neutral	Damaging
KB222	11	inherited (F)	p.Pro1191Leu	Damaging	0.764	Probably Polymorphism	51	Class C25	Deleterious	Damaging
KB32	11	inherited (F)	p.Arg1258Gln	Damaging	0.997	Polymorphism	44	Class C35	Neutral	Damaging
KB307	14	NA	p.Glu1391Lys	Damaging	1	Polymorphism	29	Class C65	Deleterious	Damaging
KB28	15	inherited (M)	p.Met1417Val	Damaging	0.476	Polymorphism	22	Class C15	Neutral	Tolerated
KB28	15	inherited (M)	p.Leu1418Met	Damaging	1	Polymorphism	15	Class C0	Neutral	Damaging
KB174	15	inherited (M)	p.Ile1428Thr	Damaging	0.889	Probably Pathogenic	73	Class C65	Neutral	Tolerated
KB138	16	NA	p.Ser1476Cys	Benign	0.005	Polymorphism	44	Class C65	Neutral	Tolerated
KB34	16	inherited (F)	p.Gln1522Arg	Damaging	0.997	Probably Polymorphism	59	Class C35	Deleterious	Damaging
KB177	22	NA	p.Glu1742Asp	Benign	0	Polymorphism	15	Class C0	Neutral	Tolerated
KB204	31	inherited (M)	p.Gly2213Asp	Damaging	0.454	Probably Pathogenic	66	Class C65	Neutral	Damaging
KB119	31	inherited (M)	p.Gly2213Asp	Damaging	0.454	Probably Pathogenic	66	Class C65	Neutral	Damaging
KB326	31	NA	p.Pro2271Ser	Benign	0.024	Probably Polymorphism	59	Class C65	Neutral	Damaging
KB107	31	NA	p.Pro2324Thr	Damaging	0.985	Probably Pathogenic	66	Class C35	Neutral	Damaging
KB122	31	inherited (M)	p.Leu2610Pro *	Benign	0.076	Probably Polymorphism	51	Class C65	Neutral	Tolerated
KB287	31	inherited (M)	p.Leu2610Pro *	Benign	0.076	Probably Polymorphism	51	Class C65	Neutral	Tolerated
KB27	34	NA	p.Pro2841Thr	Benign	0.009	Probably Pathogenic	66	Class C35	Neutral	Damaging
KB326	34	NA	p.Met3398Val	Benign	0	Polymorphism	29	Class C0	Deleterious	Damaging
KB292	37	de novo	p.Gly3500Val	Damaging	0.99	Pathogenic	88	Class C65	Deleterious	Damaging
KB86	39	NA	p.Arg3656Cys	Damaging	1	Pathogenic	81	Class C65	Neutral	Damaging
KB293	39	NA	p.Gln3932Glu	Benign	0.002	Polymorphism	15	Class C0	Neutral	Damaging
KB204	39	inherited (F)	p.Lys4024Glu	Benign	0.296	Polymorphism	29	Class C55	Neutral	Damaging
KB247	39	NA	p.Arg4162Gln	Benign	0.003	Polymorphism	48	Class C0	Neutral	Damaging
KB107	39	NA	p.Pro4163Leu	Damaging	0.991	Probably Polymorphism	51	Class C65	Neutral	Damaging
KB170	39	inherited (M)	p.Pro4419Leu	Damaging	1	Probably Polymorphism	51	Class C65	Deleterious	Damaging
KB86	48	NA	p.Ala4965Thr	Damaging	0.941	Probably Polymorphism	59	Class C55	Neutral	Tolerated
KB38	48	de novo	p.Asp5028Glu	Damaging	0.999	Polymorphism	22	Class C35	Deleterious	Damaging
KB154	48	de novo	p.Arg5030Cys	Damaging	1	Pathogenic	81	Class C65	Deleterious	Damaging
KB185	48	de novo	p.Arg5030Cys	Damaging	1	Pathogenic	81	Class C65	Deleterious	Damaging
KB38	48	NA	p.Phe5034Val	Damaging	0.999	Polymorphism	44	Class C45	Deleterious	Damaging
KB76	48	de novo	p.His5059Pro	Damaging	1	Probably Pathogenic	73	Class C65	Deleterious	Damaging
KB129	48	NA	p.Thr5098Pro	Damaging	0.992	Probably Pathogenic	66	Class C35	Deleterious	Tolerated
KB171	48	inherited (M)	p.Gly5189Arg	Damaging	1	Pathogenic	88	Class C65	Deleterious	Damaging
KB264	48	NA	p.Arg5214Cys	Damaging	1	Pathogenic	81	Class C65	Deleterious	Damaging
KB219	48	NA	p.Arg5214His	Damaging	1	Polymorphism	37	Class C25	Deleterious	Damaging
KB24	48	de novo	p.Arg5214His	Damaging	1	Polymorphism	37	Class C25	Deleterious	Damaging
KB109	48	de novo	p.Trp5217Arg	Damaging	1	Probably Pathogenic	73	Class C65	Deleterious	Damaging
KB17	50	de novo	p.Arg5340Gln	Damaging	1	Polymorphism	37	Class C35	Deleterious	Damaging
KB169	51	de novo	p.Glu5425Lys	Damaging	1	Polymorphism	29	Class C55	Deleterious	Damaging
KB90	51	NA	p.Arg5432Gln	Damaging	1	Polymorphism	44	Class C35	Deleterious	Damaging
KB177	52	NA	p.Arg5471Met	Damaging	1	Pathogenic	100	Class C0	Deleterious	Damaging
KB120	54	de novo	p.Tyr5510Asp	Damaging	1	Pathogenic	81	Class C0	Deleterious	Damaging
KDM6A	mutations									
KB131	20	de novo	p.Asp980Val	Damaging	1	NA	NA	Class C65	Deleterious	Damaging

* Kabuki-unrelated mutation, found in diffuse large B-cell lymphoma.

RefSeq NM_003482.3

§ the score ranges from C0 (least likely interfere with function) to C65 (most likely interfere with function)

Supp. Table S3. Values of the measured quantities and *p*-values

B

-

Α

Sample	KMT2D
KB44	0,455* (p=0,0003)
KB45	0,452* (p=0,0003)
KB83	0,386* (p=0,0002)
KB41	0,657 (p=0,0020)
KB48	0,352 (p=0,0001)
KB82	0,634 (p=0,0020)
KB186	0,702* (p=0,0020)
KB153	0,579* (p=0,0013)
KB3	0,660* (p=0,0015)

Sample	HOXC6	S100A2	S100A4	S100A5	S100A6
KB41	0,144* (p=0,0001)	0,954 (p=0,83620)	0,896 (p=0,0409)	0,798 (p=0,0043)	1,037 (p=0,0271)
KB44	0,427* (p=0,0003)	0,608* (p=0,0011)	0,423* (p=0,0000)	0,665* (p=0,0018)	0,241* (p=0,0000)
KB45	0,034* (p=0,0000)	0,259* (p=0,0001)	0,847* (p=0,0054)	0,662* (p=0,0026)	0,587* (p=0,0000)
KB48	0,560* (p=0,0007)	0,545* (p=0,0012)	0,634* (p=0,0002)	0,381* (p=0,0002)	0,296* (p=0,0000)
KB82	0,052* (p=0,0010)	0,563* (p=0,0008)	0,574* (p=0,0000)	1,258 (p=0,1348)	0,889 (p=0,0129)
KB290	0,297* (p=0,0003)	0,844 (p=0,0537)	0,582* (p=0,0003)	0,708* (p=0,0062)	0,683* (p=0,0000)

Sample	HOXC6	Sample
С		D

···· •		
KB153	0,167* (p=0,0003)	K
KB186	0,859 (p=0,012)	K
КВЗ	0,609* (p=0,0009)	K
KB153+E2	0,324* (p=0,0000)	K
KB186+E2	0,607* (p=0,0003)	K
KB3+E2	0,776* (p=0,009)	K

Sample	Luciferase activity
KB153	0,293* (p=0,0003)
KB186	0,904 (p=0,0201)
КВЗ	0,579* (p=0,0021)
KB153+E2	0,156* (p=0,0003)
KB186+E2	0,519* (p=0,0002)
KB3+E2	0.375* (p=0.0013)

KMT2D	Sample	KMT2D
2,935* (p=0,0000)	KB44	1,192 (p=0,011)
2,186* (p=0,0000)	KB45	1,345 (p=0,011)
4,010* (p=0,0006)	KB48	1,932* (p=0,0000)
	KB83	1,691* (p=0,0001)

F

(A) Protein level of KMT2D in 6 KS-LCL and 3 KS-fibroblast cell lines as showed in Figure 1A-F; (B) HOXC6, S100A2, S100A4, S100A5, S100A6 expression level in 6 KS-LCL cells reported in Figure 1G; (C) HOXC6 transcriptional level in 3 KS-fibroblast cells treated or not with E2 (Figure 2A-B); (D) Luciferase activity in 3 KS-fibroblast cells transfected with pGL3-ERE1-ERE2 luciferase-based reporter vector containing the HOXC6 EREs sequences, treated or not with E2 reported in Figure 2C-E; (E-F) mRNA levels of KMT2D in 3 KS-fibroblast (E) and 4 KS-LCL lines (F) following treatment with puromycin (Supp. Figure S3A and C). *p-values* <0.01 are marked by asterisk.

Е

Sample

KB153

KB186

KB3

Supp.	Table S4.	Basal and	l gentamic-induced	readtrough for	KB mutations
F F			8		

Gene	WT codon	Mutation	Nt change	Nucleotidic context of stop mutation	Readthrough at gentamicin (µg/ml)=%		Increase factor between doses 0 and 600	Increase factor between doses 0 and 800	Increase factor between doses 0 and 1200		
					0	600	800	1200			
KMT2D	TAT	p.Tyr223X	c.669T>G	TGGGAGGGGGCTGCA TAG CTGGAGGAGGCTCCA	0,002	0,009*	0,004	0,004	4	2	2
KMT2D	TGG	p.Trp1473X	c.4419G>A	TGGTGGAAGTGCAAG TGA TGTGTGTCCTGT CCA	0,187	0,104	0,089	0,096	1	0	1
KMT2D	CGA	p.Arg2099X	c.6295 C>T	TGGCGTAAGACTGAC TGA CCGGCCCTACATCCA	0,022	0,398*	0,436*	0,356*	18	19	16
KMT2D	CAG	p.Gln2416X	c.7246C>T	TGGCCTGCCAGTCCT TAG TCCCAGTCCAGCCCA	0,013	0,037*	0,047*	0,062*	3	4	5
KMT2D	CGA	p.Arg2635X	c.7903C>T	TGGGGAGCCTCACAGTGATCAGGCATCACC CCA	0,015	0,147*	0,135*	0,267*	10	9	18
KMT2D	GAA	p.Glu2646X	c.7936C>T	TGGGTCGAAAAGCGA TAA GACCCAGGGACTCCA	0,008	0,019*	0,026*	0,026*	3	3	3
KMT2D	CGA	p.Arg3321X	c.9961C>T	TGGCTTGCAGGTGCCTGACAGCCAGGTTTGCCA	0,082	0,681*	0,887*	0,985*	8	11	12
KMT2D	CAG	p.Gln3379X	c.10135C>T	TGGCCAGTGCTATCA TAG AAGCCCATGGGCCCA	0,003	0,008*	0,011*	0,013*	2	3	3
KMT2D	CAG	p.Gln3584X	c.10750C>T	TGGCAGGTCCGGAAATAGCAGAAGGAGCACCCA	0,049	0,213*	0,241*	0,269*	4	5	6
KMT2D	CGA	p.Arg3707X	c.11119C>T	TGGAACCTTGCTCTT TGA AGCCTCGGACCTCCA	0,014	0,079*	0,099*	0,098*	6	7	7
KMT2D	CAG	p.Gln3757X	c.11269C>T	TGGATCCAGCAGCAATAGCAGCAGGGTCCTCCA	0,015	0,141*	0,117*	0,249*	10	8	17
KMT2D	CAG	p.Gln4092X	c.12274C>T	TGGTCTCTGCAGCTG TAG CCACCTCTGAGGCCA	0,080	0,135	0,145	0,152	2	2	2
KMT2D	CGA	p.Arg4282X	c.12844C>T	TGGGGGGCAGGGCCT TGA CCTCAGGGCCCACCA	0,036	0,545*	0,652*	0,967*	15	18	27
KMT2D	CGA	p.Arg5027X	c.15079C>T	TGGGACAAGGTACCG TGA GACATGCGTCGCCCA	0,090	0,119	0,103	0,168	1	1	2
KDM6A	CGA	p.Arg519X	c.1555C>T	TGGGTTGCACAGGTA TGA TCTACTGGAATTCCA	0,018	0,069*	0,061*	0,072*	4	3	4
KDM6A	TGG	p.Trp1239X	c.3717G>A	TGGAACAACATTGCT TGA AATGTTGGTCCACCA	0,006	0,000	0,001	0,001	0	0	0
	TQ: in frame Ctrl			GCAGGAACACAACAGCAATTACAG	18,122	14,865	15,635	12,372	1	1	1
	CGA^	p.Ser319X	c.956C>G	AGCCCATTTCCTTGACAGCATTTGGAA	0,027	0,299*	0,344*	0,454*	11	13	17

The readtrough response was defined as the factor of increase between basal and gentamicin-induced reatrough levels.

TQ: construct with no stop codon (100% of activity)

^: Duchenne muscolar dystrophy gene mutation used as positive control

°: Miyake, et al., 2013b

*: *p-value* <0.01