

Supporting Information

© 2014 The Authors. Published by Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim

Pyrene-Capped CdSe@ZnS Nanoparticles as Sensitive Flexible Oxygen Sensors in Non-Aqueous Media**

Soranyel González-Carrero,^[a] Miguel de la Guardia,^[b] Raquel E. Galian,^{*[a]} and Julia Pérez-Prieto^{*[a]}

open_201402021_sm_miscellaneous_information.pdf

Supporting information				
Figure S1. Emission spectra of CS@Py at λ_{exc} = 340 nm (A ₃₄₀ = 0.15) in hexane (a), dichlorometane (b), ethyl acetate (c), chloroform (d) and dioxane (e) in the presence of increasing [O ₂].				
Figure S2 I_0/I dependence of $[O_2]$ for M [*] , E [*] and CS [*] of CS@Py in the solvents assayed.	S3			
Figure S3 τ_0/τ dependence of [O ₂] for M*, E* and CS* in the solvents assayed.	S4			
Figure S4 Kinetic decay traces, and their fitting to exponential functions of time, registered at λ_{exc} = 397nm (A), 480 nm (B) and 640 nm (C) for CS@Py in THF in the presence of increasing [O ₂]: a) 0 mM, b) 2 mM and c) 10 mM.				
Figure S5 Change of monomer emission of deaerated CS@Py sample vs. the time under atmospheric pressure monitored for: hexane (A), dichloromethane (B), ethyl acetate (C), tetrahydrofuran (D), chloroform (E), toluene (F) and dioxane (G).				
Table S2. Stern-Volmer quenching constant for pyrene excimer, K_{E^*} , and nanoparticle, K_{CS^*}	S7			
Figure S6. Dependence of the CS@Py response (<i>R</i>) under nitrogen, air, and oxygen for the different solvents	S7			

Т

Figure S1. Emission spectra of CS@Py at λ_{exc} = 340 nm (A₃₄₀ = 0.15) in hexane (a), dichlorometane (b), ethyl acetate (c), chloroform (d) and dioxane (e), in the presence of increasing [O₂]: the deaerated sample (black), the aerated sample (blue) and the O₂ saturated sample (green).

Figure S2 I_0/I dependence of $[O_2]$ for M^{*}, E^{*} and CS^{*} of CS@Py in the solvents assayed

Figure S3 $\tau_0\!/\tau$ dependence of $[O_2]$ for M*, E* and CS* in the solvents assayed

Figure S4 Kinetic decay traces, and their fitting to exponential functions of time, registered at λ_{exc} = 397 nm (A), 480 nm (B) and 640 nm (C) for CS@Py in THF in the presence of increasing [O₂]: a) 0 mM, b) 2 mM and c) 10 mM.

Figure S5 Change of monomer emission of deaerated CS@Py sample vs. the time under atmospheric pressure monitored for: hexane (A), dichloromethane (B), ethyl acetate (C), tetrahydrofuran (D), chloroform (E), toluene (F) and dioxane (G).

Solvent	$\mathbf{K}_{E^*} (M^{-1})$	r ^[a]	$\mathbf{K}_{CS^{*}}(M^{-1})$	r ^[a]	
Hexane	691.09 ± 0.9	0.9999	9.0 ± 1.0	0.9453	
Dichloromethane	416.6 ± 4	0.9998	28.9 ± 8.0	0.7760	
Ethyl acetate	844.3 ± 2	0.9999	$12.6\ \pm 4$	0.6426	
Tetrahydrofuran	657.3 ± 0.1	0.9986	[b]	[b]	
Chloroform	280.6 ± 2	0.9999	25.1 ± 2	0.9848	
Toluene	883.3 ± 11	0.9997	33.54 ± 1	0.9870	
Dioxane	490.8 ± 1	0.9999	66.45 ± 9	0.9537	
^[a] Linear regression fits. ^[b] CS* Lifetime does not change with the oxygen concentration in this solvent.					

Table S2. Stern-Volmer quenching constant for pyrene excimer, K_{E^*} , and nanoparticle, K_{CS^*}

Figure S6. Dependence of the CS@Py response (R) under nitrogen, air, and oxygen for the different solvents