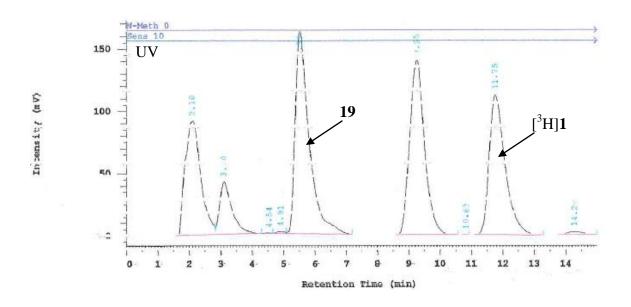
Radiosynthesis and Evaluation of an ¹⁸F-Labeled Positron Emission Tomography (PET) Radioligand for Metabotropic Glutamate Receptor Subtype 4 (mGlu₄)


Kun-Eek Kil, Pekka Poutiainen, Zhaoda Zhang, Aijun Zhu, Ji-Kyung Choi, Kimmo Jokivarsi, Anna-Liisa Brownell*

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States

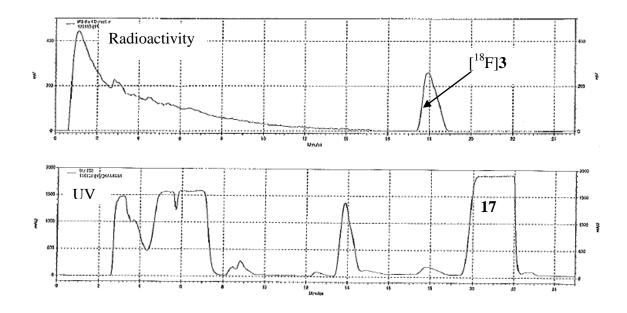
Supporting Information

A.	Chromatography of [³ H]1 Radiosynthesis	.S2
В.	In Vitro Selectivity of 3 to mGlu ₁ , mGlu ₅ and mGlu ₈	.S2
C.	UV and Radioactivity Traces of the Radiolabeling Reaction Mixture by the So	emi-
	Preparative HPLC.	.S3
D.	Analysis of [18F]3 Formulated in 10% Ethanol Solution in Saline	.S4
E.	Stability Test of 3 in the Neutral Media	.S5
F.	Analysis of [18F]3 Formulated with 10% Ethanol Solution in 0.1 M Citrate Bu	ıffer
	(pH 4)	.S6
Re	ferences	.S7

A. Chromatography of [3H]1 Radiosynthesis

Gemini-NX C_{18} semipreparative column (250 mm \times 10 mm, 5 μ m)

55% Acetonitrile / 45% 0.1 M ammonium formate solution

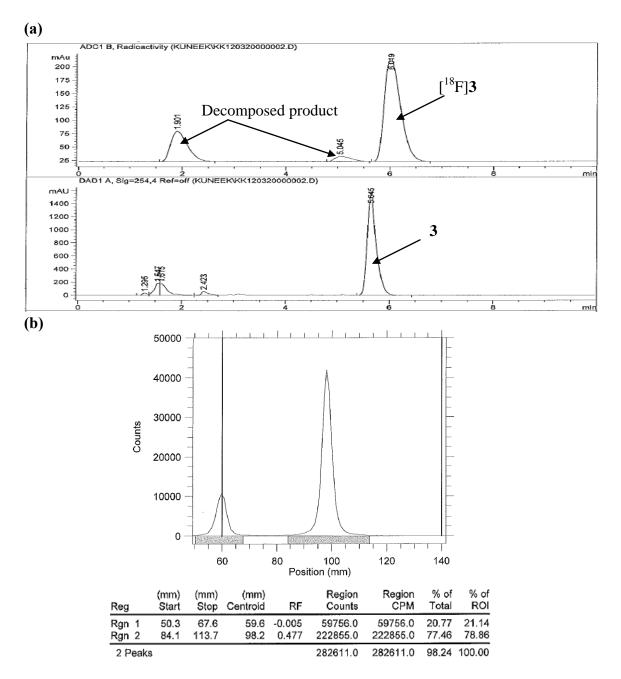

4.0 ml/min, 254 nm

B. In Vitro Selectivity of 3 to mGlu₁, mGlu₅ and mGlu₈.

Functional Assay: 10 μM		mGluR1a		mGluR5		mGluR8	
Comp#	Structure	Agonist-%MAX	Antigonist-%INH	Agonist-%MAX	Antigonist-%INH	Agonist-%MAX	Antigonist-%INH
3	CN HN CI OF	0	15	-13	14	33	-44

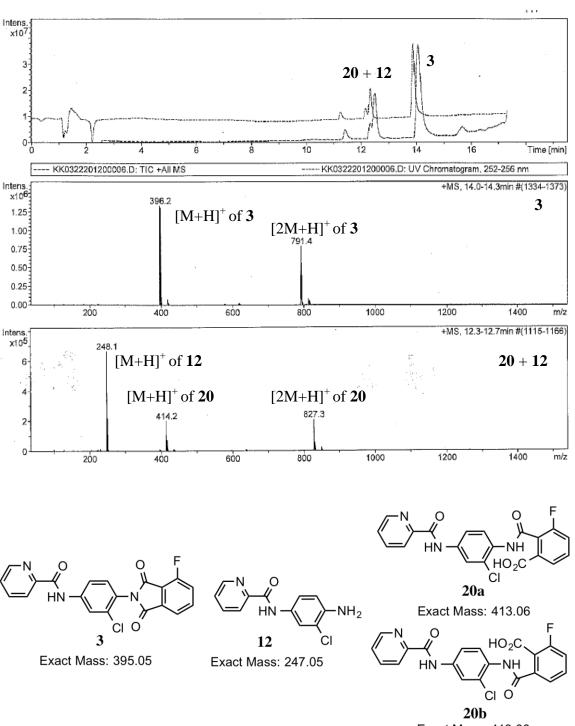
Functional assays were performed using a single concentration (10 μ M) of **3** to determine agonist or antagonist activity.^{1,2} The tests were carried out by the NIMH PDSP program at the University of North Carolina at Chapel Hill.

C. UV and Radioactivity Traces of the Radiolabeling Reaction Mixture by the Semi-Preparative HPLC



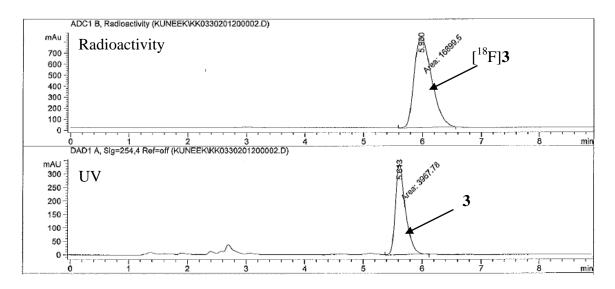
Eclipse XDB-Phenyl semipreparative column (250 mm × 10 mm, 5 μm)

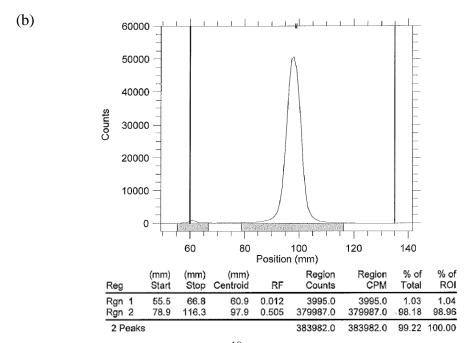
0.1% formic acid solution of water and acetonitrile (52:48)


Flow rate: 4 ml/min

D. Analysis of [18F]3 Formulated in 10% Ethanol Solution in Saline.

(a) Analytical HPLC profile of [¹⁸F]**3** co-injected with nonradioactive standard **3** by a neutral method. (b) The radio-TLC result obtained after the radioactive aliquot was formulated in 10% ethanol in saline, cospotted with nonradioactive **3** on TLC and developed with a solution of ethyl acetate and hexane (1:1).


E. Stability Test of 3 in the Neutral Media



Exact Mass: 413.06

F. Analysis of [¹⁸F]3 Formulated with 10% Ethanol Solution in 0.1 M Citrate Buffer (pH 4).

(a)

(a) Analytical HPLC profile of [¹⁸F]**3** co-injected with nonradioactive standard **3** by an acidic method. (b) The radio-TLC result obtained after the radioactive aliquot was formulated in a 0.1 M citrate buffer solution (pH 4) with 10% ethanol, cospotted with the nonradioactive **3** on TLC and developed with a solution of ethyl acetate and hexane (1:1).

References

- (1) Shi, Q.; Savage, J. E.; Hufeisen, S. J.; Rauser, L.; Grajkowska, E.; Ernsberger, P.; Wroblewski, J. T.; Nadeau, J. H.; Roth, B. L. L-Homocysteine sulfinic acid and other acidic homocysteine derivatives are potent and selective metabotropic glutamate receptor agonists. *J. Pharmacol. Exp. Ther.* **2003**, *305*, 131-142.
- (2) Roth, B. L.: National Institute of Mental Health Psychoactive Drug Screening Program Assay Protocol Book