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The Model. We model the growth of a metastatic lesion as a
branching process (1) that starts from a single cell sensitive to
treatment. Sensitive cells divide with rate b and die with rate d. The
net growth rate of sensitive cells is r= b− d. During division, one of
the daughter cells receives a resistance mutation with probability u.
Resistant cells have birth and death rates bR and dR. Resistant mu-
tations can be neutral in the absence of treatment, which means they
have the same birth and death rates as sensitive cells, and we initially
focus on this case. Alternatively, if c= ðbR − dRÞ=ðb− dÞ> 1, then
resistance mutations are advantageous before treatment; if c< 1, they
are deleterious. We assume that mutation rate u is small, final lesion
sizeM is large,Mu � 1, and we are mostly interested in the behavior
of the early surviving clones. Furthermore, since mutation rate u is
small, we assume that the size of the resistant population is much
smaller than the size of the sensitive population, and approximate the
size of the sensitive population with the size of the lesion.

Rate of Production of Mutants. We use the result (2) that the col-
lection of tumor sizes at which resistance mutations are produced can
be viewed (approximated) as a homogeneous Poisson process on
½1;M� with intensity u=ð1− d=bÞ. The reasoning follows from the
fact that the average total number of resistance mutations produced
when there are exactly x sensitive cells in the population is given by

Rx =
bux

1− d=b

Z∞
0

fxðtÞdt; [S1]

where fxðtÞ is the probability that there are exactly x sensitive cells
after time t and the factor 1− d=b comes from only looking at
lineages in which the tumor population did not go extinct. In the
small mutation rate u limit, one can neglect the production of
mutants to calculate fxðtÞ as pertaining to a single type branching
process on the sensitive cells. Even though it seems that Iwasa
et al. (2) were not aware of it, fxðtÞ was derived by Bailey (1)

fxðtÞ = ð1− αÞð1− βÞβ x−1; [S2]

with α= ðdert − dÞ=ðbert − dÞ and β= ðbert − bÞ=ðbert − dÞ. Plugging
in the expression for fx into Eq. 1 leads to the rate at which
mutants are produced when there are x sensitive cells

Rx = u=ð1− d=bÞ: [S3]

Amore intuitive way to prove this result is as follows: when the
population contains exactly x sensitive cells, the probability that
they will produce a mutant before going to x− 1 or x+ 1 sensitive
cells is bu=ðb+ dÞ. The (average) number of occurrences of ex-
actly x cells in the process is one plus the (average) number of
returns of a biased random walk with p= b=ðb+ dÞ. Multiplying
the probability of producing a mutant cell while at state x with
the number of occurrences of that state leads to Rx = u=ð1− d=bÞ.
Eachmutant cell survives stochastic driftwith probability 1− d=b, so

the tumor sizes at which mutations that survive stochastic drift are
produced canbe viewed as aPoissonprocess on ½1;M�with intensityu.
BecauseM is large and u is small, we can replace the interval ½1;M� by
½0;M� without losing much accuracy (3).

Size of the kth Resistant Clone. Let Mk be the size of the sensitive
population when the kth successful resistant mutant appears.
Furthermore, let Yk denote the size of the kth resistant sub-

population that survives stochastic drift when there are M-
sensitive cells, conditioned on Mk ≤M. By the time the sensitive
population reached size M, Yk can be approximated by MV=Mk,
where V is an exponentially distributed random variable with
mean b=ðb− dÞ (4). If FkðyÞ=Pr½Yk ≤ y� is the cumulative distri-
bution of Yk, then, expanding on the reasoning in ref. 3, we have

FkðyÞ≈ 1−Pr½MV=Mk ≥ yjMk ≤M�

= 1−
ZM
0

Prob:Density½Mk = zjMk ≤M�×Pr
h
V ≥

yz
M

i
dz

= 1−
ZM
0

ðzuÞk−1e−zuu
ðk− 1Þ!

 
1−

Xk− 1

l=0

ðMuÞl e−Mu

l!

!−1

exp
�
−
ryz
Mb

�
dz:

Evaluating the integral above leads to

FkðyÞ≈ 1−
�

Mu
Mu+ y− dy=b

�k ΓðkÞ−Γðk;Mu+ y− dy=bÞ
ΓðkÞ−Γðk;MuÞ ; [S4]

where ΓðkÞ= ðk− 1Þ! and Γða; zÞ= R∞z ta−1e−tdt is the incomplete
Gamma function.
The probability density function for Yk, fk =F′k, is given by

fkðyÞ ≈ rkðbMuÞkðbMu+ ryÞ−1−kΓðkÞ−Γðk;Mu+ y− dy=bÞ
ΓðkÞ−Γðk;MuÞ : [S5]

In particular, for k � Mu, we have

FkðyÞ ≈ 1−
�

Mu
Mu+ y− dy=b

�k

; [S6]

and

fkðyÞ ≈ kð1− d=bÞðMuÞkðMu+ y− dy=bÞ−1−k: [S7]

Comparison of Formula S6 and the cumulative distribution func-
tion for Yk obtained from 5;000 runs of the exact computer
simulation of the branching process is shown in Fig. 1B.
Calculating the expected number of cells in the kth clone using

Formula S7 (integrating from 0 to M) and expanding it in the
small u limit, we obtain

EðYkÞ ≈ bMu
rðk− 1Þ+O

�
u2
�
; [S8]

for k≥ 2 and

EðY1Þ ≈ bMu
r

�
log

r
bu

− 1
�
+O

�
u2
�
: [S9]

We can also obtain the median for the number of cells in the kth
clone, Y 1=2

k , from the cumulative distribution function (S6)

Y 1=2
k =

bMu
r

�
21=k − 1

�
: [S10]

Ratio of Resistant Clone Sizes. To more precisely determine the
relationship between the sizes of different subclones, we next
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calculate the probability distribution of Y1=Yk: the ratio of sizes
of first and kth clone. We again use the fact that the random
variable describing the size of the kth clone, Yk, can be ap-
proximated by VkM=Mk, where Vk ∼Exp½b=ðb− dÞ�, and that Mk,
size of the population on the arrival of the kth clone, is the sum
of k exponential random variables with mean 1=u. We have

Pr½Y1=Yk ≤ x�=Pr½V1M=M1 ≤ xVkM=Mk�=Pr½V1=Vk ≤ xM1=Mk�:

We note that Z=V1=Vk is the ratio of two independent, identically
distributed exponential random variables and thus its probability
density function is fZðzÞ= 1=ðz+ 1Þ2. Similarly, W =M1=Mk ∼
Γ½1; λ�=ðΓ½1; λ�+Γ½k− 1; λ�Þ∼ β½1; k− 1� is a β-distributed ran-
dom variable with probability density function fW ðwÞ=
ðk− 1Þð1−wÞk−2. It follows that

Pr½Y1=Yk ≤ x� = Pr½Z≤ xW �

=
Z1
0

ðk− 1Þð1−wÞk−2
Zwx
0

1

ðz+ 1Þ2 dzdw

=
x

1+ x

�
1−

k− 1
k
 2F1½1; 1; 1+ k; − x�

�
;

[S11]

where 2F1 is the hypergeometric function. Notably, this distri-
bution depends only on k and not on any parameters of the
process.
For example, the probability that the ratio of sizes of the first

and the second clone is smaller than x is

Pr½Y1=Y2 ≤ x� = 1−
logð1+ xÞ

x
: [S12]

In particular, the first successful subclone that appears is smaller
than the second appearing subclone in 31% of cases. The prob-
ability that the first appearing subclone is twice as large or larger
than the second appearing clone is 55%, and the probability that
it is 10 or more times larger is 24%.

Nonneutral Resistance. In this section, we will obtain similar results
for the probability distributions of clone sizes and their ratios in
the case in which resistant cells have birth and death rates bR and
dR, respectively. Tumor sizes at which resistance mutations ap-
pear can still be viewed as a homogeneous Poisson process on
½0;M� with intensity u=ð1− d=bÞ. However, the lineages of newly
produced resistance mutations will escape extinction with prob-
ability 1− dR=bR, so the successful resistant subclones in this
scenario will arrive with rate uR = uð1− dR=bRÞ=ð1− d=bÞ. An-
other change from the neutral case is that the size of the kth
clone when the total population size is M can be approximated
with Yk ∼ ðM=MkÞcU, where Mk is the population size when the
kth successful resistance mutation appeared and U is an expo-
nentially distributed random variable with mean bR=ðbR − dRÞ.
We recall that c= ðbR − dRÞ=ðb− dÞ.

With the above caveats, we can write the derivation of the
cumulative distribution function for the size of the kth appearing
resistant subclone, Yk, similarly as before

FkðyÞ ≈ 1−Pr½ðM=MkÞcU ≥ yjMk ≤M�

= 1−
ZM
0

Prob:Density½Mk = zjMk ≤M� × Pr
�
U ≥

yzc

Mc

	
dz

= 1−

 
1−

Xk− 1

l=0

ðMuRÞl e−MuR

l!

!−1 ZM
0

uRðzuRÞk−1e−zuR
ðk− 1Þ!

× exp
�
−
rRyzc

bRMc

�
dz:

[S13]

The difference is that in the nonneutral case the integral has to be
evaluated numerically.
For the ratio of clone sizes Yk=Y1 in the nonneutral case, we

have

Pr½Y1=Yk ≤ x�=Pr


U1ðM=M1Þc ≤ xUkðM=MkÞc

�
=Pr



U1=Uk ≤ xðM1=MkÞc

�

=
Z1
0

ðk− 1Þ
�
1−w1=c

�k−21
c
w1=c−1

Zwx
0

1

ðz+ 1Þ2 dz  dw

=
Z1
0

k− 1
c

�
1−w1=c

�k−2 xw1=c

1+wx
dw:

[S14]

We see that even when resistance is not neutral, the ratio of clone
sizes depends only on the order of appearance and the relative
fitness c and not on M, u, and the specific birth and death rates
of cells.
Our formulas rely on the approximation Y ∼ exp½ðbR − dRÞt�U for

the size of a resistant clone Y, where U is an exponentially distrib-
uted random variable with mean bR=ðbR − dRÞ and time t is mea-
sured from the appearance of the founder cell of the clone. This
approximation assumes large t and loses accuracy for t close to
0 [e.g., it predicts that the average size of a clone at time 0 is
bR=ðbR − dRÞ rather than 1]. Thus, our formulas lose accuracy when
successful resistant clones are produced shortly before reaching size
M. Successful resistant clones appear as a Poisson process on the
number of sensitive cells with rate uR = uð1− dR=bRÞ=ð1− d=bÞ
when resistance is not neutral, and the first such clone will ap-
pear when there are ∼ 1=uR sensitive cells. For our approxima-
tion to hold, M must be significantly larger than 1=uR, which is
equivalent to Mucðb=bRÞ � 1. In other words, we assume that
the relative fitness c is such that the expected number of suc-
cessful resistant clones, MuR, is much larger than 1.
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