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Parameter Estimations
Eq. 1.

e M,: The number of macrophages in the lung is 15 x 10° cells/
mL (1) so that their density is My=1.5x10"> g/mL.

o Jmr, and Ayy,: In experiments reported in ref. 2, macrophages
were used to inhibit the growth of Legionella pneumophila.
The macrophages were then activated either by IFN-y or by
TNF-a. We write the equation for colony-forming unit (CFU)
of L. pneumophila in the form

d CFU CFU
a AU dMaerg e

where M, is the density of the activated macrophages, and K is
a constant. The doubling time of L. pneumophila is 2 h (3), so
that 1=8.32 d™". In the case of inhibition by macrophages that
were not activated by either IFN-y or TNF-a, we have My =M
and, as reported in ref. 2, the CFU increased from 2 x 10*
units (U)/mL to 10° U/mL after 1 d and to 5x10° U/mL
after 2 d (U=2x1075 mg). Using Newton’s method, we get
K =4.48x10"% g/ml and dM =0.23 gmL~".d™".

In the case of inhibition by macrophage activated by TNF-a,
we have

To
My= (14 g, —"— M.
=)

It was found in ref. 2 that, after 2 d, the CFU, initially at
2% 10* U/mL, increased to 10° U/mL when T, =10% U/mL;
to a smaller level, 5x 10° U/mL when T, =10 U/mL; and to
an even smaller level, 4x10° U/mL when T,=10* U/mL.
Using these three data in the dynamics of CFU and applying
Newton’s method, we get three slightly different values for
Amrt,, with average Ay, =0.49.

In the case of inhibition by macrophage-activated by IFN-y,
we have

I
My=(1+hy—"|M.
4 ( M1y1y+K1,>

In the experimental data in ref. 2, the CFU decreased from
2x10* U/mL to 10" U/mL when I, =10 U/mL. Using again
Newton’s method, we find that Ay, =0.65.

e Ayc: It is reported in ref. 4 that the inhibition of bacterial
growth by macrophages activated by GM-CSF is approxi-
mately twice the inhibition by macrophage-activated by IFN-y.
Hence we take AyG =24y, =1.3.

Eq. 2.

e Kr: We assume that the inhibition by Treg reduces the pro-
duction of Thl by half if Treg is at the “average” density in
asthma, reported to be 2x1072 g/em® (5), so that K7 =
2x 1072 g/em’.

e Kj,r,: We assume that the inhibition of IL-12 Th1 activation
by IL-10 [expressed by 1/(1+110/Ki,r, )] is larger than the in-
hibition of macrophage IL-12 production by IL-10 [expressed
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by 1/(1+10/K;,,)] By ref. 6, Ky, =2x1077 g/mL, and we
take Kj,,r, = (1/10)Kp,, =2x 1078 g/em’.

e Az, In ref. 7 it was shown that 10° CD25 P14 T cells stimu-
lated by 0.2 ng/mL of IL-2 increased to 2x 10° cells in 7 d.
Using the equation

dT I

——T1-drT
dt T12K12+12 ! T

with Kz, =5x 107" g/mL (5, 8), we get
Ty(7) =T (0) o7, x08~dr)

Since dr =7.71x1073 d™" (9, 10), we get 477, =0.13 d™".

Eq. 5.

e J;,7,: We assume that T cells produce more IFN-y than mac-
rophages and take A;, 7, =24,u.

Eq. 6.

o Ar,r1,: According to ref. 11, 2x 109 Th1 cells produced 12 pg/mL
of TGF-B. Assuming steady state, we have

/1T/,T1 T, — dTﬂ T/; =0.

Because d7, =3.33x 107 d™' (12), we get Az,7, =4.2x 10710 d".

e Jr,1,: According to ref. 11, The production of TGF-p by Treg
is 2.2 times more than the production by Th1 cells. Hence we
get Ar,r, =2.247,7, =9.24x 1071 471,

e Jrym: According to ref. 13, 10° alveolar macrophages pro-
duced 40 pg/mL of TGF-f. Assuming steady state, we have

MMy —dz, Ty =0.
Because dy, =3.33x 10> d™' (12), we get Az, =3.86x 1077 d™".

Eq. 7.

e Ayt According to ref. 6, alveolar macrophages incubated

with IFN-y produced three times more IL-12 p40 than without
IFN-y. Hence 4., = 3.

Eq. 8.
e Az In our model, the equation for TNF-a secretion by (in-
activated) macrophages is
dT,(t)
dt

=Ar,uM —d7,Tq,

and, if M is fixed, then

_ ﬂT“MM - eidT“t(/ITaMM -7, (O)dT,l)
= &

a

To(t)

Productions of TNF-a by macrophages are reported in ref.
14 with 10° macrophages. After 1 d, T, increased from
0 to 5x10~® g/mL. Taking M =103 g/mL, T,(0)=0, and
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dr,=55.45 d7' (15), we get Az =2.72x 1073 d~'. Alterna-
tively, in ref. 16, 10° alveolar macrophages produced 66 ng/mL of
TNF-a, so that A7, 5 =3 x 1073 d~. By taking the average, we get
A =2.86%1073 d7,

e Kj,: According to ref. 17, TNF-a production is reduced by
20% when alveolar macrophages are incubated with 5 ng/mL
IL-13. Hence we have 1/((1+5x107)/K;,,) =4/5, which im-
plies that Kj,, =2 x 1078 g/cm3. We assume that IL-13 is more
active in lung tissue and take K, =2x 1077 g/cm>.

Eq. 9.

e Jnr,: Experiments with the production of IL-2 by Thl are
reported in ref. 18: With 3 x 10° cells/mL, IL-2 increased from
0 to 26.7 pg/mL (2 h), 435.3 pg/mL (4 h), 662.2 pg/mL (6 h),
and 1,1841.2 pg/mL (24 h). In our model, the equation de-
scribing the production of IL-2 by Thl is

dal,
E = ﬂ[le T — d]zlz.

With dj, =2.376 d™" (19, 20), we find that the choice of
AT, =1.15% 10~4 d~! makes the best fit to these experiments.

Eq. 11.

e J1,m: According to ref. 21, 10° alveolar macrophages produce (in
vitro) 3,200 pg/mL of IL-10. Using the steady-state equation

AnomMy —dr, 110 =0,

with dp,, =16.64 d™' (22), we get A;,,n =5.32x 107> d~'. We
assume that in lung tissue, alveolar macrophages are more
active than in vitro and take A7, =2x 1073 d™".

Eq. 12.

o Ar,m: In ref. 23, 10° alveolar macrophages under LPS in sys-
temic sclerosis produce 1.25 ng/mL of IL-13. However, the
concentration of IL-13 in BALF was twice as much in sarcoid-
osis as in systemic sclerosis. Using the steady-state equation

AIISMM _d[131]3 = 07

with I13=2.5x 10~° ¢/mL, d;,, = 12.47 d~" (24), we get Ay, =
3.98x 107> d~'. We assume that in lung tissue, alveolar macro-
phages are more active and take 47,3 =3.98x 104 d~".

Eq. 13.

e dcgr and dcy: We assume that internalization rates of CCL20,
dcr and dcy are equal. We further assume that when C, T,
and 77 are sufficiently large, namely,
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C=I<C7 Tr =KT,7 and T17 =KT,~7

the loss by internalization is the same as the loss due to degra-
dation, so that

Kc

2d, -
R Ke+Kce

Ky, = dcKe.

Then with de =1.73 d™" (19), we get deg =dcrr =1.73x 1070 d7.

o Acr,: We assume that the production of CCL20 by Th17 is
less than the production by activated macrophage and take
Aery, =% Acm.

Other Parameters. To determine all of the remaining parameters,
we use the expression of cytokines in healthy lung tissue reported
by Crouser et al. (25) and summarized in Table S1. We also use
the following facts in steady-state lung tissue: The ratio of Thl to
Th17 in the healthy case is 10 (26), i.e., Ty7 = T1/10, and the ratio
of Treg to Thl7 is ~5 (27), i.e., T,=T;/2; furthermore, the
production of IFN-y by macrophage is approximately half of that
by Th1 cells (28), so that ;5 = (1/2)1,1,. Using these relations
and inserting the data from Table S1 into the steady-state
equations of the model for the healthy case (namely, when f =0),
we obtain 14 equations for concentrations of Thl cells (77), for
T}, and for the 12 unknown parameters (7,7,, ATygs Aropg, Aong,»
/’lTaly7ﬂGM7 3,113,(1110/\4, ﬂ«T,127/1CM7dT7 and dM) SOlViIlg for these
unknowns, we find the concentration of the T cells to be

T1=1.074x1072,T,=5.372%x 1073, T17 =1.074 x 107,
Tp=1.55x107".

The values of the 12 unknown parameters listed above are given
in Tables S2 and S3.

Sensitivity Analysis. The parameters chosen are those whose
baseline was somewhat crudely estimated whereas at the same
time they seem to play an important role in the development of
the granuloma. Specifically, we chose all of the 15 production rate
parameters from the third column of Table S2.

Following the sensitivity analysis method described in ref. 29, we
performed Latin hypercube sampling and generated 100 samples
to calculate the partial rank correlation coefficients (PRCC) and
P values with respect to the radius of granuloma after 100 d. The
PRCCs are shown in Fig. S1, and all of the P values (not shown
here) are less than 0.01. We see that the production rates of
IFN-y by Thl cells (4;,1,), IL-2 by Thl cells (4,7,), and IL-12
p40 by macrophages (A,?SM) are highly positively correlated with
the growth of the granulomas, whereas the production rates of
TGF-g by Treg (47,7,), TGF-B by Thl cells (ir,7,), IL-10 by
macrophages (41,,m), and IL-13 by macrophages (4s,,»r) are highly
negatively correlated with the growth of the granulomas.
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Fig. S1. The PRCC of parameters for sensitivity analysis.

Table S1. Lung tissue cytokine concentration

Cytokine Value Cytokine Value

IL-2 5.2x 1077 g/mL IL-10 1.82x 1077 g/mL
IL-12(p40) 4.94x 1075 g/mL IL-12(p70) 1.04x 1077 g/mL
IL-13 6.5%x 1078 g/mL GM-CSF 3.12x 1077 g/mL
CCL20 4.81x107% g/mL TNF-a 1.56x 1077 g/mL
IFN-y 3.9x 1078 g/mL
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Table S2. Parameter descriptions and values

Parameter Description Value and source
Dy Diffusion coefficient of macrophage 8.64x107 cm~2.d~" (1, 2)

Dr, Diffusion coefficient of Th1 cell 8.64x 107 cm=2d~" (1, 2)

Dr, Diffusion coefficient of Treg cell 8.64x107 cm™2d™" (1, 2)

Dr,, Diffusion coefficient of Th17 cell 8.64x 107 cm™2d™" (1, 2)

D, Diffusion coefficient of IFN-y 1.08x 102 cm~2.d~" (3)

Dy, Diffusion coefficient of TGF-B 432x102 cm™2d~"' (3)

Dy, Diffusion coefficient of IL-2 1.08x 102 cm~2.d~"' (3)

Dy, Diffusion coefficient of IL-10 1.08x 1072 cm~2.d~" (3)

Dy, Diffusion coefficient of IL-12 1.08x 102 cm~2.d~" (3)

Dy, Diffusion coefficient of IL-13 1.08%x 102 cm~2d~"' (3)

Dg Diffusion coefficient of GM-CSF 1.728x 1072 cm™2.d™"' (3)

Dc Diffusion coefficient of CCL20 1.728x 1072 cm™2.d~"' (3)

Dr, Diffusion coefficient for TNF-a 1.29%1072 cm=2.d~" (3)

Ami, Activation rate of macrophages by IFN-y 0.69 (4, 5) & estimated

AMG Activation rate of macrophages by GM-CSF 1.3 (4, 5) & estimated

AmT, Activation rate of macrophages by TNF-a 0.32 (4, 5) & estimated

Ay Activation rate of Th1 cells by IL-12 6x1074d" (3)

At Activation rate of Th1 cells by IL-2 0.13d™" (6) & estimated

AT, Activation rate of Treg cells by IL-2 1.76x 108 d™" (7) & estimated
Ay Activation rate of Th17 cells 3.55%x 107 d~' (7) & estimated
ATy Production rate of IFN-y by Th1 cells 2.34%10°6 d~' (7) & estimated
Am Production rate of IFN-y by macrophages 1.17x 107 d~' (7) & estimated
A, Production rate of TGF-g by Th1 cells 4.2%x1071° d" (8) & estimated
T, Production rate of TGF-B by Treg cells 9.24x107'° d~' (8) & estimated
AT,m Production rate of TGF-p by macrophages 3.86x10~7 d' (9) & estimated
/1,13,‘,,‘\ Production rate of IL-12 p40 by macrophages 3.78x 1073 d7' (7) & estimated
AIZQMA Production rate of IL-12 p70 by macrophages 9.64x 1074 d~' (7) & estimated
AT.m Production rate of TNF-a by macrophages 2.86x 1073 d~' (10, 11) & estimated
A1, Production rate of TNF-a by IFN-y 10.24 (7) & estimated

A1 Production rate of IL-2 by Th1 cells 1.15x 1074 d~' (12)

AGm Production rate of GM-CSF by macrophages 8.65x 1074 d~' (7) & estimated
Ay Production rate of IL-13 by Th2 cells 2.12x1077 gmL~".d™" (7) & estimated
Alsm Production rate of IL-13 by macrophages 3.98x 104 d~' (13) & estimated
Alom Production rate of IL-10 by macrophages 2x 1073 d~" (9) & estimated
Acm Production rate of CCL20 by macrophages 4.86%x10-3 d~' (7) & estimated
Actyy Production rate of CCL20 by Th17 9.71% 1074 d' (7) & estimated
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Table S3. Parameters’ description and value
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Parameter Description Value and source

dy Death rate of macrophage 0.49 d~' (1) & estimated

dr Death rate of Th1 cell 1.97x107" d~' (1) & estimated
dr, Death rate of Treg cell 1.97x 107" d~' (1) & estimated
dr, Death rate of Th17 cell 1.97x 107" d™" (1) & estimated

d, Degradation rate of IFN-y 0.69d7' (2)

dr, Degradation rate of TGF-§ 333x102d7"' (3)

di, Degradation rate of IL-12 1.188d7' (2)

dr, Degradation rate of TNF-a 55.45 d~' (4)

dy, Degradation rate of IL-2 2376 d7' (2, 5)

ds Degradation rate of GM-CSF 4.16 d" (6)

diss Degradation rate of IL-13 1247 d7" (7)

di, Degradation rate of IL-10 16.64 d" (8)

dc Degradation rate of CCL20 1.73d7' (2)

der Degradation rate of CCL20 by chemotaxis of Treg 1.73x107¢ d~" estimated

dcy Degradation rate of CCL20 by chemotaxis of Th17 1.73% 1076 d~" estimated

xc Chemotactic sensitivity parameter 10cm>.g'.d7"(@29)

My Alveolar macrophage density 1.5%x10-3g-ml™". d~" (10) & estimated
Km Alveolar macrophage density 3x103g-cm=3. d7" (10) & estimated
K, IFN-y saturation 2x1077g-cm~3 (11)

Kr, TNF-a saturation 5x10~7 g/em® (11)

K¢ GM-CSF saturation 1x%1076 g/cm? (11)

Ki, IL-12 saturation 1.5%107° g/em? (1)

Ko IL-10 saturation 2x1077 g/lem?® (12)

Kiot, IL-10 saturation by Th1 cells 2% 1078 g/cm? (12) & estimated
Ki, IL-2 saturation 5x 1077 g/em® (11)

Kr, Treg cells saturation 3x1072 g/cm? (13)

Kis IL-13 saturation 2% 1077 g/cm? (14) & estimated
Kc CCL20 saturation 2x 107 g/cm?® (15)
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