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Supplementary Methods
Further Analytical Considerations.

Jacobian Factor

We have included the Jacobian factor in our definition of the
PMFT. The motivation for doing this is that by explicitly including
this term we do not want to either ignore or introduce any artifacts
that might stem from a poor choice of coordinates for a given prob-
lem. Note that for general particles in three dimensions, the PMFT is
defined on the space R3×RP3. This means that even if the pair inter-
action is purely hard, whenever there is non-trivial shape, some rel-
ative pair configurations are preferred over others. In standard treat-
ments of the isotropic potential of mean force, it is not conventional
to include the Jacobian factor. The choice not to include it in that
case is well-motivated by the existence of a single “natural” coordi-
nate system in that case that prevents any ambiguity there. In either
case, one must take account of the inclusion or not of this factor in
writing down the effective equations of motion for the pair.

Axisymmetric Coordinate System for PMFT

We present an explicit computation of the Jacobian of the change
of variables between the natural coordinates of a pair of particles, and
the scalar invariant quantities that describe any such pair. We do so in
the simpler case of axisymmetric particles. The general case can be
computed straightforwardly in the same manner, but the expressions
are cumbersome.

We take the first particle to be at the origin, with its symmetry
axis oriented in the positive z direction. Using the azimuthal sym-
metry with this placement, we fix the second particle’s position in
the xy-plane, without loss of generality to be along the x axis. This
gives the orientation of the second particle as

n̂2 = sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ [1]

where θ and ϕ are spherical coordinates in the coordinate system of
the second particle, and its position as

r2 − r1 = ρx̂+ zẑ [2]

where ρ and z are cylindrical coordinates in the first particle’s co-
ordinate system. The volume form that appears in the integral that
computes the partition function is

dV = ρ sin θdρdzdθdϕ [3]

Now we make the change of variables to the scalar invariant quanti-
ties by taking

R =
√
z2 + ρ2

φ1 =
z√

z2 + ρ2

φ2 = −ρ sin θ cosϕ+ z cos θ√
z2 + ρ2

χ = − cos θ

[4]

Inverting the relationship between the two coordinate systems gives

ρ = R
√

1− φ2
1

z = Rφ1

θ = − cos−1 χ

ϕ = cos−1

(
−φ1χ− φ2√

(1− χ2)(1− φ2
1)

) [5]

The computation of the determinant is simplified by noting the de-
pendence of ρ and z on only R and φ1, and θ on only χ. This means
that we only need to consider the dependence of ϕ on φ2. Taking the
determinant of this leads to the new volume form

dV =
R2dRdφ1dφ2dχ√

1− χ2 − φ2
1 − φ2

2 − 2φ1φ2χ
[6]

In the absence of the excluded volume (or other) interaction between
the particles, this expression measures the volume of configuration
space available to a pair of free particles in a particular translation-
ally and rotationally invariant configuration.

To verify that our expression correctly encodes the density of
states for two free axisymmetric particles, we consider the following
scenario. Suppose we had a pair of axisymmetric particles each un-
dergoing Brownian motion with the constraint that their centers of
mass could never be separated by a distance greater than Rmax, but
that they were otherwise free to move, including to interpenetrate. If
we were to make someNobs uncorrelated observations of the particles
for each of which we determine the values of R, φ1, φ2, and χ, we
would find that their frequency distribution would converge to some-
thing proportional to the Jacobian of our coordinate transformation
in the limit that Nobs → ∞. We therefore verified our expression by
performing precisely this calculation.

General Coordinate System for PMFT

For the general case in three dimensions, a pair of particle has six
degrees of freedom that are invariant under global translations and
rotations. Let us take the particles to be situated at ~x1,2, and have ori-
entations q1,2. Starting with the positions, the separation of the par-
ticles in position space is simply given by the vector ~r12 = ~x2 − ~x1.
This gives a set of coordinates that are invariant under translations,
but not under rotations. We therefore seek to form six scalars by
taking combinations of this vector with the particle orientations.

To treat the particle orientations on a similar footing to the posi-
tions, we need to determine the separation in orientation of the parti-
cles. We note that that each of the particle orientations is given by an
element of SO(3), the rotation group in three dimensions. While it is
possible to work with this group directly, the calculations that follow
can be simplified greatly by noting that SU(2) is the double cover
of SO(3), and working with SU(2) instead. For concreteness, we
will use the conventions common in quantum mechanics and write
our particle orientations as rotation operators according to

qi = ei
θi
2
n̂·~σ , [7]

where θi is the angle of rotation n̂i is the normal to the plane of the
rotation and ~σ are the Pauli matrices. From this form it is clear that
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under a global rotation, the particle orientations transform in the re-
ducible representation expressed in Young tableaux as

⊗ = ⊕ . [8]

This can be understood intuitively in the following way: if you rotate
a particle by some amount in some plane, two different observers
will agree on the amount of the rotation, but will give the normal
to the plane in their own coordinates. The amount of the rotation is

the scalar , and the normal to the plane is the vector . In a
similar fashion to the way in which we combined particle positions
to yield a relative position, we will combine particle orientations. A
Clebsh-Gordan decomposition of the particle orientations gives

(
⊗

)
⊗
(
⊗

)
= ⊕

⊕ ⊕ ⊕

⊕ ,
[9]

which means that the combination of the two orientations yields two
scalars (spin 0), three vectors (spin 1), and a tensor (spin 2).

For convenience, we note that the spin 1 representation of SU(2)

is also the adjoint representation of SU(2). This means that
we can write vectors in ordinary space by using the Pauli matrices as
Cartesian unit vectors according to

~v =
∑
i

~v · êiσi . [10]

In this representation, if we combine orientations expressed in terms
of Pauli matrices as in [7], products of orientations that are propor-
tional to the identity matrix are scalar quantities, and products that
are not are vectors. We will use this fact momentarily.

For the purposes of creating scalar invariants by combining them
among themselves, and with the particle separation in position, the
scalars and vectors that arise from combining orientations are of in-
terest. We determine these scalars and vectors explicitly by taking
symmetrized Hermitian products of the particle orientations. We find
the scalars can be expressed as

S12 =
1

2
(q1q

†
2 + q2q

†
1)

U12 =
1

4
(q1q2 + q2q1 + q†1q

†
2 + q†2q

†
1)

[11]

and the vectors as

V12 =
i

4
(q1q2 − q2q1 + q†1q

†
2 − q†2q

†
1)

W12 =− i

4
(q1q2 + q2q1 − q†1q

†
2 − q†2q

†
1)

T12 =− i

2
(q1q

†
2 − q2q

†
1)− V12

[12]

which we have identified according to their matrix form. Using our
convention for representing the particle orientations we find

S12 = cos

(
θ1 − θ2

2

)
U12 = cos

(
θ1 + θ2

2

)
V12 =

1

2
(n̂1 × n̂2)(S12 − U12)

W12 = sin

(
θ1 + θ2

2

)
n̂1 + n̂2

2
+ sin

(
θ1 − θ2

2

)
n̂1 − n̂2

2

T12 = sin

(
θ1 + θ2

2

)
n̂1 + n̂2

2
− sin

(
θ1 − θ2

2

)
n̂1 − n̂2

2
[13]

By combining these quantities with ~r12 we can form the six scalar
invariants

{|~r12|, S12, U12, r̂12 ·W12, r̂12 · V12, W12 · T12} [14]

For the purposes of showing the coordination of particles in space
at the location of faces or facets, it is convenient to integrate over
some of the angular degrees of freedom, and to work in Cartesian
coordinates. In particular, it is very convenient to work in Cartesian
coordinates adapted to the particle facets as shown in Fig. 1 for tetra-
hedral facets.

Forces and Torques

For concreteness, we give an example for how to compute the
forces and torques from the PMFT. As usual, forces and torques arise
from taking the negative gradient of the potential. For force compo-
nents this is straightfoward. For torques, we give an explicit expres-
sion for the case of axisymmetric particles.

To compute the torques, we continue to work in terms of rotation
matrices in the spin 1

2
representation of SU(2). If q is the rotation,

then to determine the torque, we must differentiate the PMFT with
respect to it. If we represent the rotations in the canonical fashion,
and use Pauli matrices as the basis vectors of the Cartesian space
coordinates, then we have scalar products of the form

~a ·~b =
1

2
Tr(a†b) [15]

and cross products of the form

~a×~b =
1

2i
[a, b] [16]

Our potential depends on scalar products alone. That means to deter-
mine the torque we are required to know, e.g., that if

φ1 =
1

2
Tr(q†ẑqr̂12) [17]

then
∂φ1

∂q
=

1

2
q†
[
qr̂12q

†, ẑ
]

[18]

which we recognize as a cross product. We have taken, without loss
of generality, the reference vector to be ẑ in the coordinate frame
of the particle. We then use the chain rule to differentiate F12 with
respect to q, and convert back to Cartesian coordinates to find a con-
tribution to the torque of the form

~Tφ1 = −r̂12 × n̂1
∂F12

∂φ1
[19]

Similar manipulations yield the other contributions.
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Numerical Methods.

Monodisperse Systems

For hard particle systems, the various contributions in Eq. (5)
(main text) can be computed using different means. The pair in-
teraction term (βU ) is given by the pair overlap function, which is
known, at least in principle. The pair Jacobian term (− log J) can
be computed analytically, as we describe below. The third contribu-
tion (βF̃12) could be computed by determining the free energy of the
rest of the system for a series of fixed configurations of the pair. In
practice, we are not interested in the contributions of each of the in-
dividual terms per se, so instead we compute their sum directly. We
obtain the PMFT on the left hand side of Eq. (5) (main text) by com-
puting the frequency histogram of the relative pair coordinates and
orientations, and taking its logarithm, as suggested by the form of
Eq. (4) (main text). This gives the PMFT up to an overall irrelevant
additive constant1.

Since the PMFT is a generalization of the potential of mean
force, the method for computing the PMFT is a straightforward gen-
eralization of the method used to extract the potential of mean force
from the radial distribution function g(r). In detail, over the course
of a MC simulation trajectory, we measure all of the relative positions
of each pair of particles that fall within a given cutoff distance (for the
results we present in the main text we integrate over the relative ori-
entations). We impose a discrete grid over the set of allowed relative
positions, and record the number of pairs that fall within each grid
cell. This tabulation of the relative frequency of the various config-
urations, gives us a measurement of the g(x, y, z) analogue of g(r),
and so simply taking the logarithm gives us F12 from Eq. (5) (main
text).

Computing the PMFT in this manner introduces two forms of
systematic discretization error. To illustrate the sources of this error
we will give a more detailed description of the calculation we per-
formed. We wish to compute the PMFT at some given relative posi-
tion and orientation. For concreteness, and to keep formulae simple,
let us consider just computing the force component. In principle, one
can compute the PMFT by performing thermodynamic integration or
umbrella sampling over various fixed relative particle positions if one
wants the exact potential difference between particular relative pair
positions and orientations. However, in our case we are interested in
the general geometric features of the potential, for which it is suffi-
cient to perform simulations in a standard ensemble, and record the
relative frequency of various events. Thus we compute an approx-
imate value, F ′12, of the true PMFT, F12, at some point (xi, yi, zi)
by averaging over a bin of size (∆x,∆y,∆z) centered at that point
according to

∆x∆y∆ze−βF
′
12(xi,yi,zi) ≡

∫
bini

dxdydze−βF12(x,y,z) . [20]

If the true potential of mean force and torque is slowly varying over
the bin, in the sense that∣∣∣∣∫

bini

dxdydz(~x− ~xi) · ∇ e−βF12(x,y,z)
∣∣∣
~x=~xi

∣∣∣∣
� ∆x∆y∆ze−βF12(xi,yi,zi) ,

[21]

then we can Taylor expand the integrand about (xi, yi, zi), and, as-
suming that the whole bin is allowed, we find that

∆x∆y∆ze−βF
′
12(xi,yi,zi) ≈ ∆x∆y∆ze−βF12(xi,yi,zi) . [22]

This gives F ′12(xi, yi, zi) ≈ F12(xi, yi, zi). This approximation
breaks down if F12 is not sufficiently slowly varying, in the above
sense. It also breaks down if the bin is partially forbidden, i.e. if
the integrating volume is not ∆x∆y∆z. We expect the PMFT to
vary quickly at the boundaries of regions that are forbidden due to

overlap, i.e. we expect the effective potential to be relatively “hard”.
This means that at the edges of these regions, where we would have
difficulty sampling events, we would also expect to have to resolve
minute differences to obtain meaningful results. This makes such a
technique prohibitively difficult for such boundary cases where one
would have to resort to umbrella sampling. As a result (in particular
in Figs. 2, 3, and 5, main text) we only show the PMFT for points
that are within 4 kBT of the global minimum, because it is at these
points that we can sample the potential reliably in the sense described
above, using our method.

Penetrable Hard Sphere Systems

Here we explain how we calculate the PMFT for a pair of hard, ar-
bitrarily shaped colloidal particles in a sea of smaller penetrable hard
sphere depletants.

As we showed in Eq. (9) (main text), the PMFT takes on a sim-
plified form in the case of penetrable hard sphere depletants and thus
the contribution from integrating out the depletants F̃12 can be com-
puted more easily. The contribution from the colloid pair potential is,
in principle, known, as before, and the Jacobian can be computed as
described below. The problem is therefore reduced to computing the
contribution that comes from the free volume available to the deple-
tants for a fixed configuration of the colloidal pair.

We computed the free volume in the penetrable hard sphere
model of depletants by MC integration. The same results could also
be obtained by direct MC simulations with explicit ideal depletants,
as discussed below, or by some other numerical integration method.
To accelerate this computation, we make note of the following. The
change in free volume between a given configuration and widely sep-
arated particles falls entirely within the intersection of two spheres,
each enclosing a particle. The volume of this region of intersection
is smallest (and, therefore, computation is most efficient) if the radii
of the spheres in question are as small as possible. This is given by
having a sphere enclosing each particle with a radius given by the
sum of the radius of a sphere that circumscribes the particle and the
radius of a sphere that circumscribes the depletant.

For a given relative position and orientation of the colloids, we
computed the intersection of spheres that determined this region and
computed the change in free volume by throwing random depletants
uniformly over the region and computing the fraction that intersected
both colloids. We performed five independent runs for each system.
We used 500 MC integration points per unit volume of the region of
intersection, and 1000 total throws if the volume of intersection was
less than one unit. This fraction of the total volume gives the change
in free volume available to the depletants. In the case of faceted
spheres, overlap checks between particles were performed by cast-
ing the overlap as an optimization problem that we solved using the
Karush-Kuhn-Tucker method [1]. In the case of spherocylinders, the
Bullet physics library [2] was used to check overlaps.

As noted above, the Jacobian of the transformation to invariant
coordinates can be computed analytically, which we did. We checked
our analytical calculation numerically by performing a MC simula-
tion of a pair of free axisymmetric particles. The frequency histogram
of the occurrence of the invariant coordinates was checked against the
analytic form and found to match.

To examine these systems in detail it is convenient to use the
language of entropic patches from [3]. We define the probability of
specific binding at a pair of entropic patch sites as the probability of
finding a pair of particles at the set of configurations that are in the
basin of attraction of perfect alignment. We obtain this by integrating
the Boltzmann weight over the set of configurations.

1Because the PMFT is a potential, only differences in the PMFT between points are meaning-
ful; it’s value is not. Potential differences are not affected by shifting the potential by a constant
everywhere, so one can only ever compute the potential up to a constant shift.
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Fig. 1. An illustration of the choice of four sets of orthogonal coordinates for each

of the faces of a tetrahedron, which we use for subsequent computations in Figs. 2

and 3 (main text). The face normals, which we take to be the z coordinates in the

frame of the face are shown in blue. Similarly, the x and y coordinates in the frame

of the face are shown in green and red respectively.

For concreteness, consider a pair of hemispherical particles in a
bath of depletants. The probability of specific binding can be cast
formally as the integral

Zs ∝
∫ 1

0

dφ1

∫ 1

0

dφ2

∫
dRdχe−βF12(R,φ1,φ2,χ)H(−βP∆VF) .

[23]
The upper bounds on the φ integrals correspond to coincident faces.
The step H function ensures that we are only integrating over con-
figurations in which there is entropic binding. Similar integrals can
be defined for semi-specific binding (patch to non-patch) and non-
specific binding (non-patch to non-patch).

Comparison of Methods for Penetrable Hard Sphere Depletants

The results we obtained via free volume calculations with ideal
depletants can also be obtained via simulations with explicit deple-
tants. To see why the two forms of computation are equivalent, we
consider the following situation. Again, for the sake of simplicity,
we will work in the penetrable hard sphere limit. The probability of
accepting a trial Monte Carlo move of our colloidal particle is given
by

pa = (1− p)N [24]
where N is the number of depletants, and p is the probability that
a depletant will be in the region swept out by the particle during its
move. In the limit in which we are working, this is given by

p =
∆Vsweep −∆Voverlap

VF
[25]

where VF is the free volume available to the depletants, ∆Vsweep is the
volume swept out by the colloid during move, and ∆Voverlap accounts
for any increase in the depletant overlap volume.

In the limit that the move is small, i.e. Np � 1, the probability
of accepting the move is

pa ≈ 1− N(∆Vsweep −∆Voverlap)

VF
[26]

which gives the probability of rejecting such a move as

pr ≈
N(∆Vsweep −∆Voverlap)

VF
[27]

We can, similarly, find the probability of rejecting a reverse move.
That is given by

p′r ≈
N(∆Vsweep)

VF + ∆Voverlap
≈ N∆Vsweep

VF

(
1− ∆Voverlap

VF

)
[28]

where we have assumed that, without loss of generality, the “for-
ward” move causes an increase in the depletant overlap volume, and
the reverse move causes it to decrease. We have again also used the
fact that the size of the move is small.

We compute the difference in probability for the two moves

∆p ≡ p′r − pr ≈
N∆Voverlap

VF

(
1− ∆Vsweep

VF

)
≈ N∆Voverlap

VF
.

[29]
We can now consider another pair of moves in which the initial

configuration of the forward move is identical to the situation just
described, but the final configuration is different. If in that case the
change in overlap volume is ∆V ′overlap, then the probability difference
is

∆p′ ≈
N∆V ′overlap

VF
[30]

From these quantities we can compute the ratio ∆p/∆p′, which
is dependent only on the free volume, which, in turn, is encoded in
our potential of mean force and torque. We get that

∆p

∆p′
=

∆Voverlap

∆V ′overlap
[31]

which means we can write

∆p

∆p′
=

F post
12 − F

pre
12

F post
12

′ − F pre
12

[32]

in the limit that T → 0. From this expression we see that the PMFT
we deduced from the free volume calculation is precisely the quantity
that controls the average acceptance rate of MC moves of the colloids
in a simulation with explicit depletants. Hence results obtained from
the free volume methods used above will precisely match those ob-
tained using much more expensive MC simulations with explicit ideal
depletants.
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Fig. 2. Density dependence of the PMFT along an axis perpendicular to the

polyhedral face for a hard cube fluid that passes through the cube vertex. Note that

the expected increase in effective attraction that occurs as system density increases

is less pronounced than the corresponding plot in Fig. 2c (main text) for an axis that

passes through the center of the face.
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Fig. 3. DEFs in Cartesian coordinates for monodisperse hard particle systems at a packing fraction of η = 0.4 for tetrahedra (a), tetrahedrally facetted spheres (b), and

cubes (c). DEFs are computed by approximating the negative gradient of the PMFT with finite differences. All cases show preference for face-to-face alignment, but as in Fig.

3 (main text) the strength of preference, and the shape of the forces, depends on particle shape.

Table S1. Angular dependence of PMFT for Hard Hemispheres
ψ ≈ 0.95 ψ ≈ 0.98

F12(R = 0.3)/kBT 3.48± 0.05 1.16± 0.01
F12(R = 0.4)/kBT 3.64± 0.06 2.39± 0.03

Supplementary Results
Entropic Forces In Monodisperse Hard Systems. To capture
DEFs, in the manuscript we computed the PMFT. Because the PMFT
is a potential, forces are the negative gradient of it. For completeness
in Fig. 3, we give explicit calculations of the DEFs for monodisperse
hard systems in Cartesian coordinates in three example systems at
a packing fraction of η = 0.4: tetrahedra (a), tetrahedrally facetted
spheres (b), and cubes (c). The forces are computed using from the
PMFT by approximating the gradient using finite differences. We
show the force components in the plane of the facet. To produce
the plots we have chosen to represent energies in units of length so
that arrows are visible on the plots. From Fig. 3 (main text) it is can
immediately be seen that overall scale of forces is on the order of
kBT/σ where σ is the relevant length scale for the particle. Panel (a)
corresponds to Fig. 3c (main text), and shows that at η = 0.4, the
vertices of the tetrahedra are repulsive, whereas the center of the face
is attractive. In contrast, panel (b) corresponds to Fig. 3g (main text),
and shows that removing the vertices of the tetrahedron has removed
the repulsion, but the center of the face is still attractive. Panel (c)
corresponds to Fig. 3k (main text) and shows (as does Fig. 3k) that
the forces are less strong for cubes than the other two particles at this
density. Moreover, it also shows that the cubic vertices are not acting
repulsively at this density.

Entropic Torque In Monodisperse Hard Systems. In the main
text we showed directional entropic forces between particles. Here
we give an explicit calculation of the torque that aligns particles. As
a simple example, consider a particle obtained from a sphere of radius
r by cutting away the part of the sphere that intersects the half space
R3 for which z/r > α to We performed MC simulations of systems
of 1000 such particles with α = 0.01 (nearly hemispherical) at fixed
volume. Since the particles have axial symmetry, we their relative
position and orientation can be characterized by four scalar quanti-
ties. If we take the separation between the particles to be ~q12, and

their symmetry axes to be given by n̂1 and n̂2, then we are free to use

∆ξ12 = {R ≡ |~q12|, φ1 ≡ n̂1 · q̂12, φ2 ≡ −n̂2 · q̂12,
χ ≡ −n̂1 · n̂2}

[33]

In Table S1 we show the role of the PMFT in generating entropic
torques that align particle facets in this system at a density of 50%.
We find the potential difference between different particle orienta-
tions at fixed separation distance is of the order of a few kBT , giv-
ing rise to entropic torques strongly favouring alignment. Figures
are height of the potential above the global minimum for slice of
the potential with ψ ≡ φ1 = φ2 = χ fixed. Although the angu-
lar differences are small (perfect alignment is ψ = 1), the effective
interaction varies by more than 2 kBT over this angular range at
small separations, indicating that the penalty for small misalignment
is significant. Inset particle images illustrate the relative orientations
shown.

Density Dependence. In Fig. 2 (main text) we showed that there
was an effective attraction in the direction perpendicular to the par-
ticle face that increased as the density increased. We note here that
this is not an effect of the increase in density alone. For example,
in Fig. 2 we make a similar plot for cubes that, rather than passing
through the potential minimum, passes through the vertex of one of
the cubes. Comparing Fig. 2 with Fig. 2c (main text), we see that the
effect of the particle shape leads to enhancement of face-to-face con-
tact over and above what we would expect to observe based solely on
the increase in density alone. This point is also underscored in Fig. 3
(main text) above.

2 In practice, as described below we approximate each of these contributions by a 6N dimensional
integral where six of the dimensions have a near-infinitesimal domain of integration.
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Supplementary Discussion
Entropy. In this context, we should also comment further on the en-
tropy that we are computing when we compute the PMFT. We have
used the fact that, at least in principle, we can do statistical mechan-
ics in any ensemble we find convenient. As usual, the entropy of the
system is computed by counting all the microstates of theN particles
in the system, and this can be obtained by performing (in the general
case) the 6N dimensional integration over all of the positions and
orientations of all particles. Here, for the purposes of isolating the
effects of the particle shape, we have chosen to cast this integral as
a series of 6(N − 1) dimensional integrals, each of which describes
the number of microstates available to the system when a particle
pair is fixed to a certain relative position and orientation 2. It is in the
comparison of the relative entropic contributions from each of the
integrals for pair configurations that we are able to identify the “mi-
croscopic” entropic origin of the “macroscopic” entropic ordering of
the whole system seen in [3], and elsewhere in the literature. What
is perhaps not intuitive about this process in the hard particle limit,
which is like a microcanonical system in that all states have zero po-
tential energy, is that this process entails splitting up the ensemble
into configurations of fixed particle pair positions and orientations.
We are, in effect, subdividing the microcanonical ensemble into yet
smaller isobaric ensembles of states. Computations of this sort have
appeared previously in the literature, see, e.g., [4, 5].

Penetrable Hard Sphere Limit. Because the sea particles have re-
pulsive interactions with the pair of interest, the pair behaves like part
of the ‘box’ that constrains the sea. By moving the pair of interest we
are changing the shape of the box from the point of view of the sea
particles. The force exerted by the sea particles on the pair, then, is
given by the stress tensor of the particles that are being integrated out
on the boundary defined by steric hindrance with the pair of interest.
We note, therefore, that the scale of this osmotic force is given by the
scale of the stress tensor in the system; if the stress tensor is isotropic
then this is just the pressure P , and so the scale of this force is given
by Pσ3/kBT , where σ is a characteristic length scale.

In fact, the DEFs in monodisperse systems, defined above, are
further strengthened by the addition of smaller soft depletants, as re-
alized experimentally in [6, 7]. Typical colloidal experimental real-
izations of such systems require the depletants to induce interactions
with strength between ∼ 4 kBT (e.g. [8]) and ∼ 8 kBT (e.g. [9]) to
instigate binding. At very high depletant concentrations, estimates of
the effective interaction strength can reach hundreds of kBT (e.g. [8]).
See [10] and references therein for more details on the experimental
measurement of depletion forces.

Sea Particle Properties. We have shown in general that hard sys-
tems have an entropic preference for more densely packed pair con-
figurations, because particle pairs are packed by the thermal motion
of sea particles. The existence of correlations among the sea particles
implies that the entropically preferred local dense packing for the pair
is not generally the same as the global densest packing for the pair.
However, if there are no correlations among the sea particles, their
entropy depends only on the packing volume of the pair.

Intuitively, one can think of this as if the pair of interest is con-
fined within some membrane under external pressure, provided by
the boundary of the sea particles. If there is no correlation among
the sea particles, the membrane will behave as if it has no internal

stiffness, and will deform to squeeze the pair in any way they can be
squeezed. However, if there are correlations among the sea particles,
the membrane will act as if it has some inherent structure that pre-
vents it from being deformed in any possible manner, and therefore
the sea particles may not be able to pack the pair into any possible
configuration.

Also, if one considers an initially monodisperse hard system, and
takes the traditional (small) depletion limit at fixed system density,
the number of sea particles will increase dramatically. To leading
order the contribution from the sea particles scales like −βN log V ,
which means that to preserve the packing density of the system, as
we scale the characteristic size of the depletant σ, the sea particle
contribution has scales (naively) as σ−3. This means that systems of
colloids and traditional, small, weakly interacting depletants, the os-
motic pressure of the depletants can easily be much greater than the
osmotic pressure of the other colloids, in determining the pair config-
uration. However, if the depletants are sufficiently large to be com-
pletely excluded from the region within a colloidal aggregate, then
the shape entropy of the colloids within the aggregates then becomes
important, as shown in an experiment by Rossi et al. [11].

Many-Body Interactions. The observation of face-to-face contacts
in self-assembled systems, as noted in [12, 13], suggests that the ef-
fects of shape can be captured by an effective pair potential, such
as the PMFT. Indeed we have shown in this paper a preference for
polyhedra to align face-to-face, see Fig. 3 (main text). However,
there are reported systems where coincident face-to-face alignment
is not preferred, such as in octahedra (e.g. [12]). We regard these as
many-body effects, which become more important at higher packing
fractions, and which would be captured only by a many-body PMFT.

Formally, the n-body extension of the present techniques is
straightforward; the only obstacle is to enumerate scalar invariant
quantities for the n bodies, and compute their Jacobian. In prac-
tice, however, as n increases, so does the difficulty of obtaining suffi-
ciently many measurements to compute the potential with accuracy.

Interaction Range. The range of DEFs is determined by the prop-
erties of the sea particles: their intrinsic interactions, size, shape, etc.
Typically, we would expect that the sea particles generate an effective
interaction between the colloids that is roughly of the order of the sea
particle size. Given this intrinsic limitation, one might ask whether
we can design shape features on the colloidal particles in order to
control the assembly? This is developed in detail in [3]; we briefly
comment on it here, too.

If the sea particles are small, noninteracting depletants, the range
is sufficiently short that only shape features (on the colloidal pair)
that are adjacent in closely packed configurations contribute to the
interaction, e.g. flat faces in polyhedra, dimples and complementary
spheres in lock-and-key experiments. [9, 14–16] Following [3], we
identify these features as “entropic patches”. Note that if the patches
are sufficiently well-separated, the interactions are pair-wise addi-
tive, and so the effective potential energy of the colloids is given by
the sum of the pair interaction energies.

If the sea particles are not small, or are interacting, then we would
expect the interaction range to be longer, and the approximation that
individual particle features can be considered separately as entropic
patches may not always be valid, though we have preliminary results
in several cases suggesting it still is. [17]
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