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Hopane Data Interpolation
The hopane data used in this study represent discrete sample
concentrations collected at individual core locations (Methods).
Estimates of the total amount of hopane deposited in the study
area (Fig. 5) were calculated using spatial interpolation methods
based on the discrete sample concentration values. All analyses
were performed using the Geostatistical Analyst Toolbox in ArcGIS
10.2 and are described below. Additional information about the
individual parameters, statistics, and techniques used is available (1).

Inverse Distance Weighting. The data were explored first using
inverse distance weighting (IDW), a simple interpolator that
averages the values of a given number of data points in a specified
search neighborhood and weights them by their distance from the
interpolated point (1, 2). This technique assumes no stationarity
in the data and operates under the assumption that points that
are closer to one another are more similar than those farther
apart. To this end, the model requires a defined maximum and
minimum number of neighboring points, a search neighborhood
geometry and radius, and a power function that defines the
weight of the neighboring points proportional to their inverse
distance. It should be noted that this method by definition pre-
serves the exact value located at the input points where the
distance is zero.
In this analysis, a constant circular search radius of 40 km was

used, and variation was allowed in the maximum number of points
used to interpolate at a given location. Varying the maximum
number of points in the interpolation has an effect similar to
varying the radius: Using a greater number of points will include
points farther away, and using fewer points will, in effect, limit the
search radius. An additional geometry also was tested whereby
the circular geometry was split into four quadrants with the main
axis oriented at a 45° angle. This geometry was chosen for two
reasons: (i) the elevated hopane data tend to follow a 45°
southwest–northeast trend, creating some overall anisotropy as it
impinges on the rising topography of the continental slope, and
(ii) the four quadrants force the interpolation to use the pre-
scribed number of points from each quadrant, preventing spatial
selectivity from a cluster of points in a limited region or di-
rection. Last, the power-law exponent was varied using values of
1 and 3, whereby the weights of surrounding points are pro-
portional to the inverse distance from the interpolated point
raised to the prescribed exponent. In simple terms, an exponent
of 0 would weight all points evenly regardless of distance, but as
the exponent increases, the weights of distant points decrease
rapidly. Table S1 presents the parameter setups for the IDW
interpolation models.
For each IDWmodel cross-validation was performed. In cross-

validation each input point is removed, one at a time, and the
surface is interpolated again to predict the associated value using
the other points. In lieu of IDW prediction errors, these cross-
validation values can be compared with the input point value to
obtain a general metric of the model’s robustness. Ideally, the
mean predicted error from the cross-validation would be close
to 0, and the root mean squared error (RMSE) would be as low
as possible (i.e., an RMSE and mean predicted error of 0 would
be a perfect match between the predicted and the measured
data points).
Results from the IDW interpolation over the study area are

shown in Table S1. Mean hopane concentrations range from 170–
213 ng·g−1 for individual runs and account for 5.8–7.5% of the
total hopane discharge estimate from the Macondo Well. This

calculation assumes a background hopane concentration of
28 ng·g−1 in the Gulf of Mexico and provides one estimate of
uncertainty as to the magnitude of hopane contamination in
this region. Mean predicted errors and RMSE are relatively
insensitive to the range of parameters tested.

Empirical Bayesian Kriging. IDW is simplistic and fast, but kriging
techniques generally require a considerable amount of decision-
making and some assumptions about the stationarity and distri-
bution of data (1, 2). Kriging statistical techniques allow a variety
of output surfaces to be produced, including predictions, pre-
diction SEs, probabilities, and quantiles, permitting better con-
straint and quantification of the errors associated with different
parameters and interpolations. In this study, EBK was chosen as
the preferred kriging method for several reasons (1, 3, 4). First,
EBK automates the most difficult aspects of creating a valid
kriging model by subsetting the data and running multiple
semivariogram simulations to derive a best fit. This automation
reduces the amount of interactive modeling and greatly sim-
plifies the optimization of parameters. Second, EBK provides
more accurate estimates of error by accounting for the un-
certainty in the semivariogram, whereas other kriging methods
assume that the estimated semivariogram is the true semivario-
gram for the entire interpolation region. Thus, other kriging
methods tend to underestimate the SEs of prediction. Last, there
is greater flexibility and accuracy in predictions of moderately
nonstationary data using EBK than in those using other kriging
methods. The primary disadvantage of EBK is that, because it is
an iterative method, it can be computationally intensive with
larger datasets. This drawback did not prove to be problematic in
this study.
Similar to the IDW analysis, the number of maximum and

minimum neighbors and the neighborhood geometry were varied.
A standard circular geometry with a radius of 40 km was fixed
throughout, as were the overlap factor, subset size, and number of
semivariogram simulations. The overlap factor specifies the de-
gree of overlap between subsets; at the maximum possible overlap
factor of 5, each point can be used in five different simulations,
creating a smoother output surface. The subset size was fixed at 20
points to improve computational efficiency and constrain the
semivariogram estimate to a smaller area that better captures the
inherent variability of the dataset. For each subset, a semivario-
gram is estimated from the data, and new data are unconditionally
simulated at each of the input locations in the subset. A new
semivariogram then is estimated from the simulated data and is
used again to simulate new data. In this study, this process was
repeated 200 times per subset, with the distribution of these
simulations providing the improved statistical treatment of errors
compared with other methods of interpolation. It should be noted
that the overlap factor, subset sizes, and number of simulations
were optimized and fixed based on computational efficiency as
well as statistical fit, but the varied parameters in Table S2 were
the main source of variability in error.
Results from the EBK analysis (Tables S2 and S3) demonstrate

similar error statistics across parameter runs and when converted
to a surface show mean hopane concentration values similar
to those in the IDW analyses (Table S1), ranging from 171–
209 ng·g−1. These concentrations represent 5.8–7.3% of the
total estimated hopane released from the Macondo Well and
provide a second measure of uncertainty as to the magnitude
of hopane contamination in this area. The most statistically
robust parameter run was EBK-C (Fig. S6 and Table S4); this
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is the preferred prediction dataset used in the article (Figs. 5
and 6) as well as for statistical quantile prediction surfaces
(Fig. S6 and Table S4). Ideally, a prediction surface will have
a mean error close to 0, a low RMSE and average standard
prediction error (these also should be close to each other in
value), and a root mean squared standardized prediction error
(RMSE Std) close to 1. Because EBK-C has an RMSE Std
error of 0.89, it is likely that we are slightly overestimating the
variability in the predictions.

Particle Deposition Modeling
Using R (version 3.0.3), we built a Monte Carlo model of particle
deposition in several iterative rounds of parameter fitting. In each
run, the model simulates a 2 m × 2 m patch of sediment,
determining the locations of n random particles at 1-mm reso-
lution by uniform sampling of integer points on the intervals x =
[0, 2,000], y = [0, 2,000]. Particles are treated in terms of the oil
masses they carried, making no assumptions about the mass or
volume contribution of any nonoil material (e.g., bacterial floc).
For each particle, the oil mass was sampled from a broad normal
distribution, and the hopane mass fraction was sampled from
a normal distribution with a mean of 58 μg hopane·g(oil)−1 [SD,
8 μg hopane·g(oil)−1], as calculated from the available data re-
leased by NOAA.
Next, coring is simulated by randomly choosing a 3,136-mm2

block [the cross-section of a standard 6.35-cm (2.5-in) push-core]
within the patch. The number and size of particles caught by
each core then are determined, and the surficial hopane con-
centration signal in nanograms of hopane per gram of sample is
determined as follows. First, the background sample mass is
determined for a 1-cm-thick section of sediment with a dry
weight of 0.38 g·cm−3 (Methods). Second, for any particles caught
by the core, the simulated oil mass and hopane mass fraction are
used to calculate the particle-borne hopane mass. Third, the core
is assigned a background hopane signal, drawn at random from
the distribution of measured background-level (<75 ng·g−1)
surficial hopane concentrations in the dataset. Finally, the ho-
pane concentration is calculated as the sum of background
(adjusted to account for the additional oil mass) and signal
(excess hopane mass divided by the sum of dry sediment mass
and excess oil mass) concentrations. Note that this calculation is
derived from the hopane concentration and does not include the
mass of any nonoil components of the particle.
The resulting distribution of simulated surficial hopane con-

centrations was compared with the distribution measured in 707
cores at 534 sampling sites. In initial fitting, the model permitted
a single mean oil mass; repeated rounds of simulation (103 runs
per set of parameters) were used to scan an average of 5 ng–5 g
oil per particle and 10–106 particles per 2 m × 2 m patch (Fig.
S2). At particle densities >104 per patch, cores are very likely to
capture at least one particle, leaving too few background-level
cores; at lower spatial densities, an oil mass ≤0.25 mg is
insufficient to shift the surficial hopane concentration sub-
stantially, whereas an oil mass of ∼5 g per particle causes too
great a shift, with no way to populate the substantial peak at
100–200 ng·g−1. We therefore focused on spatial densities of
10–1,000 particles per patch and oil masses of 3.4 mg–1.8 g. In
addition, because no single mean oil mass could regenerate the
multimodal form of the observed distribution of surficial hopane
concentrations, we moved to a mixed model of relatively com-
mon oil-poor particles, less common midrange particles, and rare
oil-rich particles. In four successive rounds of χ2 minimization,
we alternated between refining the number and the mean oil
mass of each type of particle. The final fitted values (800 par-
ticles with a mean oil mass of 0.024 g per 2 m × 2 m patch, 90
particles with a mean oil mass of 0.19 g, and 20 particles with
a mean oil mass of 1.13 g) gave χ2 = 1,934 with 706 degrees of
freedom (Fig. S3).

To assess the heterogeneity of surficial hopane concentration
signals expected from this model, we simulated sampling two,
three, four, or five disjoint cores from each of 10,000 patches
(2 m × 2 m) generated using the optimized parameters. As before,
we calculated the surficial hopane concentration for each core;
in addition, we then calculated the mean and SD of each single-
site set of simulated hopane concentrations, obtaining a set of
10,000 paired single-site mean and SD values for two-core sim-
ulations, a second set for three-core simulations, a third for four-
core simulations, and a fourth for five-core simulations. These
values are plotted as black points in Fig. 3; as expected, the
distribution becomes more compact as the number of cores per
site increases. Finally, we calculated the mean and SD of surficial
hopane concentration measurements at each of the 117 sampling
sites at which multiple parallel cores were collected and compared
these observations (red points in Fig. 3) with the simulation.

Background Hopane Concentration
To define hopane contamination from the Deepwater Horizon
event, an estimate of background hopane concentration was
needed. A search of published literature and government reports
failed to provide prespill hopane concentrations for surficial
sediments in the northeast Gulf of Mexico. Therefore, on the
assumption that surficial hopane concentrations measured close
to the well are more likely to reflect contamination, and distant
measurements are more likely to reflect the regional back-
ground, the regional distribution of surficial hopane was ana-
lyzed with respect to distance from the Macondo Well. This
analysis shows that mean surficial hopane concentration de-
creases as distance increases to 40 km but remains roughly
constant at 28 ± 23 ng·g−1 at greater distances (n = 70), sug-
gesting that 28 ng·g−1 represents the regional mean background
concentration of hopane in surficial sediments (Fig. S4). This
approach likely provides an upper estimate of the background
concentration, because some of the samples collected at dis-
tances >40 km may have been contaminated with low concen-
trations of Macondo oil. The mean background estimate of
28 ng·g−1 shows little sensitivity to the distance threshold
chosen so long as the distance is greater than 40 km (Fig. S4).
The calculated mean background concentration was consistent

with several patterns observed within 40 km of theMacondoWell.
(i) Hopane’s sediment depth distribution revealed that sediment
collected beneath the surface layer typically was within the range
observed for surficial samples collected >40 km from the well
(e.g., Fig. 2). (ii) Surficial hopane concentrations within the
background range are present within 40 km of the Macondo
Well, as is consistent with some proximal areas receiving lesser
inputs of oil. (iii) Clusters of samples within the 40-km radius are
within the background range; notably, for samples collected at
a water depth >1,700 m the mean surficial hopane concentra-
tion (±SD) was 51.7 (±34.5) ng·g−1 (n = 47). Although not con-
clusive, these observations are broadly consistent with our
estimate of 28 ng·g−1 as a reasonable choice of mean back-
ground concentration.
To calculate the excess hopane in the vicinity of the Macondo

Well, the mean background concentration (28 ng·g−1) was sub-
tracted from the total calculated mean concentration in the con-
taminated region (170–213 ng·g−1; see Inverse distance weighting,
above). The mean concentration of surficial hopane within 40 km
of the Macondo Well is substantially higher than the background
value of 28 ng·g−1, and thus the calculation of excess hopane
is relatively insensitive to small changes in the background
concentration.
In addition to the mean background surficial hopane con-

centration, we sought to establish a cutoff value that could be used
to determine with high confidence whether a given sample is
marked by contamination with Macondo oil. The surficial
hopane concentration is <75 ng·g−1 in >95% of samples
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collected outside the 40-km contamination radius (Fig. S4);
therefore we used 75 ng·g−1 as a threshold value and considered
higher measurements as showing evidence of likely contamina-
tion. Some patterns in the data emerge at higher threshold
concentrations (e.g., 100 ng·g−1 in Fig. 2B), presumably be-
cause the signal from Macondo oil begins to dominate back-
ground variability.

Accessing NRDA Data
The data used in this study were downloaded from www.
gulfspillrestoration.noaa.gov/oil-spill/gulf-spill-data/ on January 1,
2014. The data were identified by the category of sediment
and were located under the radio button titled “NRDA data
by category.”

Limitations of This Study
In this study, we argue that the observed hopane anomaly is
caused by discharged Macondo oil; that the observed anomaly
implies deposition of ∼12% (range 4–31%) of the oil trapped in
deep intrusion layers to the sea floor; and that the observed
anomaly is best explained by the deposition of a heterogeneous
range of oil-bearing particles from the intrusion layers. Each of
these arguments carries caveats. First, no hydrocarbon has been
shown to be unique to Macondo oil, to permit definitive iden-
tification of discharged Macondo oil. Instead, our identification
is based on the spatial distribution of the hopane anomaly, which
is best explained by a point source at the Macondo Well. In the

absence of any reasonable alternative, we consider this in-
terpretation to be robust and advance this argument with a high
degree of certainty. Second, our estimates of the extent of ho-
pane contamination in the study area entail the propagation of
multiple uncertainties and could be biased toward the low side by
the necessary exclusion of several potential hopane reservoirs (as
discussed in the main text). We therefore view these calculations
with a moderate degree of certainty and consider our final es-
timate to be a likely lower bound. Third, although available in-
formation is consistent with our proposed mechanism for the
deposition of oil from the deep intrusion layers to the sea floor,
the data are insufficient to make a robust conclusion. We present
this mechanism with a low degree of certainty.
The determination of error in the scaling calculation prop-

agates uncertainties in several parameters (as described in the
main text), including the hopane concentration in Macondo oil,
sediment porosity, total oil discharge to the deep ocean, and the
background hopane concentration. We include no explicit esti-
mate of error for the assumed volume of the contaminated area or
the assumed sediment density; furthermore, we were unable to
assess analytical error for individual hopane measurements used
to calculate the average contamination level, typically on the
order of 10–20%. In addition to our preferred EBK estimate
(and the associated error based on these assumptions), we sug-
gest that the estimate should be bounded at the low end by the
lowest EBK estimate minus one SD and at the high end by the
highest EBK estimate plus one SD (Table S3).
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Fig. S1. Meter-scale lateral variability in surficial hopane concentrations measured in multiple parallel cores. Sets of two, three, four, or five cores were
collected in parallel at 117 sampling sites; sites are ordered on the y axis by minimum reported surficial hopane concentration, and all measurements for
a given site’s cores are shown as gray points. Note that the x axis is on a log scale.
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Fig. S2. Results of the initial round of particle deposition model fitting, demonstrating that the distribution of measured surficial hopane concentrations is
not well fitted by a model in which particle spatial density is high or in which particle sizes cluster around a single value. Model refinement proceeded to
investigate a combination of particles bearing small (∼0.02 g), medium (∼0.2 g), and large (∼1 g) oil masses at decreasing probabilities.
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Fig. S3. Results of the final round of particle deposition model fitting, showing only the results for the optimal value of 1.13 g oil per oil-rich particle. χ2

minimization identified the successful model as containing 800 oil-poor (mean oil mass, 0.024 g), 90 medium (mean oil mass, 0.19 g), and 20 oil-rich (mean oil
mass, 1.13 g) particles per 2 m × 2 m patch of sediment.
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Fig. S4. Relationships between surficial hopane concentration and distance from the Macondo Well highlighting the empirically derived background value of
28 ng·g−1. (A) Mean hopane concentrations calculated in 10-km radial bins (blue dots) from the Macondo Well along with the evolving mean concentration
(red dots), which is calculated using the data from the given bin along with data from all more distal bins. Red and blue envelopes correspond to the respective
colored points and indicate ±1 SD about the means. The background hopane value of 28 ng·g−1 is derived from the mean of the data >40 km distant from the
Macondo Well as indicated by the vertical line. (B) Normalized rank plot for five individual bins showing decreasing hopane values with increasing distance
from the source. Note that the background hopane concentration of 28 ng·g−1 is greater than ∼60% of the points found in the >40-km distance bin.

Fig. S5. Concentration of undecane (n = 51) overlaid on the interpolated hopane contours and study area as in Fig. 6B in the main text.

Valentine et al. www.pnas.org/cgi/content/short/1414873111 7 of 10

www.pnas.org/cgi/content/short/1414873111


Fig. S6. EBK-C cross-validation plot zoomed in (A) and with all data (B), showing the line of best fit. Fit statistics are provided in Table S5.

Fig. S7. EBK-C interpolated prediction surface and quantile prediction surfaces smoothed using a 2-km circular smoothing kernel for enhanced viewing.
Statistics are provided in Table S4.
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Fig. S8. Interpolated surface concentration differences between EBK-C and EBK-A through EBK-F smoothed using a 2-km circular smoothing kernel for
enhanced viewing. Positive values indicate higher concentrations than EBK-C, and negative values indicate lower concentration values than EBK-C.

Table S1. IDW interpolation surface parameters and results using a 40-km radius standard circular search neighborhood

ID Power
Maximum no. of

neighbors
Minimum no. of

neighbors Sector type RMSE Mean error*
Mean hopane,

ng·g−1†
% total
hopane‡

IDW-A 1 20 10 1 sector 996 33.1 213 7.5
IDW-B 3 20 10 1 sector 1,059 20.8 184 6.3
IDW-C 1 5 3 1 sector 1,022 18.4 174 5.9
IDW-D 3 5 3 1 sector 1,058 14.6 170 5.8
IDW-E 1 10 5 4 sectors at 45° 976 24.6 203 7.1
IDW-F 3 10 5 4 sectors at 45° 1,058 20.8 184 6.3
IDW-G 1 5 3 4 sectors at 45° 990 20.3 181 6.2
IDW-H 3 5 3 4 sectors at 45° 1,057 17.6 175 6.0

*Mean prediction error from cross validation.
†Mean hopane concentration inside the defined study area (Fig. 5).
‡Percent of the total estimated hopane discharged from the Macondo Well calculated using the mean hopane value minus the estimated background value of
28 ng·g−1.
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Table S2. EBK interpolation surface parameters and cross-validation statistics using a 40-km radius standard circular search
neighborhood, an overlap factor of 5, and a subset size of 20 points with 200 semivariogram simulations per subset

ID
Maximum no. of

neighbors
Minimum no. of

neighbors Sector type Mean* Mean Std† RMSE RMSE Std Average SE‡

EBK-A 20 10 1 sector 12.1 0.03 817 0.77 932
EBK-B 10 5 1 sector 14.2 0.03 811 0.83 923
EBK-C 5 3 1 sector 4.1 0.02 881 0.89 954
EBK-D 10 5 4 sectors at 45° 5.3 0.02 812 0.69 932
EBK-E 5 3 4 sectors at 45° −4.0 0.02 803 0.71 914
EBK-F 3 2 4 sectors at 45° −8.1 −8.1 0.02 827 0.76 904

*Mean prediction error.
†Mean standardized prediction error.
‡Average standard prediction error.

Table S3. EBK hopane concentration interpolation results from the study area

ID Mean, ng·g−1* Maximum, ng·g−1 Minimum, ng·g−1 SD, ng·g−1 % total hopane†

EBK-A 209 5,976 20 321 7.3
EBK-B 192 6,118 16 337 6.6
EBK-C 179 6,020 15 370 6.1
EBK-D 184 2,945 19 218 6.3
EBK-E 175 3,477 7 249 6.0
EBK-F 171 4,228 16 281 5.8

*Mean hopane concentration inside the defined study area (Fig. 5).
†Percent of the total estimated hopane discharged from the Macondo Well calculated using the mean hopane
value minus the background value of 28 ng·g−1.

Table S4. Sample points (n = 461) and EBK-C hopane concentration interpolation quantile
results from the study area

Quantile Mean, ng·g−1* Maximum, ng·g−1 Minimum, ng·g−1 SD, ng·g−1 % total hopane†

Points 355 12,800 0 931 13.2
5% <0 3,632 <0 428 0.0
25% 53 5,270 <0 278 1.0

Mean 179 6,020 15 370 6.1
75% 306 7,336 17 514 11.3
95% 587 9,060 33 841 22.6

*Mean hopane concentration inside the defined study area (Fig. 5).
†Percent of the total estimated hopane discharged from the Macondo Well calculated using the mean hopane
value minus the background value of 28 ng·g−1.

Table S5. Estimates of pure oil droplet aggregation necessary to
produce particles bearing the oil masses fitted in the particle
deposition model

Oil mass, g
No. of droplets with a

25-μm radius
No. of droplets with a

50-μm radius

0.02 4.4 × 105 5.5 × 104

0.19 3.5 × 106 4.4 × 105

1.1 1.9 × 107 2.4 × 106

Other Supporting Information Files

Dataset S1 (XLS)
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