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1. Experimental Methods
1.1. Cloning of the Mutant Strain, FC1428. C. crescentus strain CB15
naturally adheres to surfaces via an adhesive polysaccharide
termed a holdfast; production of holdfast requires the hfsA gene
(1). Strain NA1000 is a laboratory-adapted relative of CB15 and
bears a frameshift mutation in hfsA, rendering cells nonadhesive
(2). We cloned the functional hfsA(CB15) allele into pMT-862
(3) and integrated it into the NA1000 chromosome at the vanA
locus, under a vanillate-inducible promoter. The resultant strain,
FC1428, only gains the ability to adhere to surfaces when ex-
posed to vanillate. Cells are induced with 0.5 mM vanillate for
3 h before introduction into the microfluidic device; they are then
allowed to adhere to the glass interior of the device. Vanillate-
free media is then flowed over the cells for the remainder of the
experiment; induction of hfsA(CB15) does not occur in newborn
cells, which do not adhere and are thus washed out of the mi-
crofluidic chamber. This inducibly sticky strain allows for long
experimental run times, as a constantly adherent strain would
rapidly crowd the field of view with daughter cells produced over
many generations.

1.2. Growth Protocol. For each experiment, individual colonies of
FC1428 were selected from a fresh PYE-agar plate containing
kanamycin (5 μg/mL) and grown overnight in PYE medium in
a 30 °C roller incubator, taking care to ensure that the culture
was in log phase. This culture was diluted to OD660 = 0:1 with
fresh PYE and 0.5 mM vanillate and was induced for 3 h before
being loaded onto the microfluidic channel in the previously
temperature-stabilized chamber. PYE is a complex medium and
its detailed composition is provided in ref. 4.

1.3. Microfluidic Device and Single-Cell Assay. See Fig. S1 for details
of the microfluidics, optics, and image processing aspects of the
experimental setup. Y-shaped microfluidic channels were fabri-
cated and prepared as described in ref. 5. After thermal equili-
bration, the FC1428 bacterial cell culture was loaded into
a single channel and incubated for 1 h. Typically enough cells
stuck to the glass surface of the device after a 1-h period of in-
cubation for the subsequent imaging experiment. The remaining
cells (i.e., those that were not adherent) were then washed off
in the laminar flow of the microfluidic device. Two computer-
controlled syringe pumps (PHD2000, Harvard Apparatus) pum-
ped thermally equilibrated PYE media through the channel at
a constant flow rate (7 μL/min).

1.4. Time-Lapse Microscopy. The imaging process was automated
such that the imaging, stage positioning, illumination, syringe
pumps, and readout from the array detector were fully computer
controlled and could operate autonomously throughout experi-
ments of many days. Time-lapse single-cell measurements were
performed on an invertedmicroscope (Nikon Ti Eclipse) equipped
with a motorized sample stage and a controller (Prior Scientific
ProScan III). Phase-contrast microscopy was performed with
a Nikon Plan Fluor 100× oil objective, a 2.5× expander, and
a mercury fiber illuminator (Nikon C-HGFI). A computer-con-
trolled shutter (Lambda SC) was used to coordinate light exposure
and image acquisition. The image was collected on an electron
multiplying charge coupled device detector (EMCCD, Andor
iXon+ DU888 1024 × 1024 pixels). To ensure thermal stability,
the microscope and syringe pumps were enclosed by a home-

made acrylic microscope enclosure ð39”× 28”× 27”Þ heated with
a closed-loop regulated heater fan (HGL419, Omega). A
uniform temperature was maintained by a proportional integral
derivative temperature controller (CSC32J, Omega) coupled
with active airflow from two small-profile heater fans inside the
enclosure. For experiments carried out below 20 °C, the tem-
perature in the entire room was lowered to 6 °C and the afore-
mentioned enclosure that includes the microscope was heated.
Phase-contrast images of multiple fields of view were recorded at
1 frame per minute and the focus adjusted automatically using
the built-in “perfect focus system” (Nikon PFS). A Virtual In-
strument routine (LabView 8.6, National Instrument) was used
to control all components (sample stage, autofocus, pumps,
EMCCD, and shutter) and to run the experiment for extended
periods of time (5–12 days).

1.5. Image Analysis and Construction of Growth Curves.The acquired
phase-contrast images were processed by identifying each
C. crescentus cell in MATLAB (MathWorks) and tracking the
cells over time using custom code written in Python. The cross-
sectional areas of each cell measured through a sequence of
images were used to determine growth curves. From these data
division events were identified. We chose to only include cells
that divided for more than 10 generations in our subsequent
analysis.

2. Cell Size Determination and Precision
Typical Gram-negative bacteria have cylindrical rotational sym-
metry around their anterior–posterior axes. In C. crescentus, the
symmetry is around a curved axis because the cells are crescent
shaped. As shown in Fig. S3, we have verified that the growth of
the cell is predominantly along the longitudinal direction, by
evaluating the curved midcell axis (the bisector of the observed
area of the cell); this length itself grows with the same expo-
nential growth rate as we deduce from the area. However,
quantifying cell size by the straight-line length joining the ante-
rior–posterior extremities of the cell instead would lead to an
accumulation of errors because it ignores the inhomogeneous
width of the cell perpendicular to this line, in the plane of ob-
servation. We use area because it obviates this problem and af-
fords us an order of magnitude better precision. We expect the
area to reflect the volume faithfully because cells are cylindri-
cally symmetric and their lengths grow exponentially with the
same time constant as the area.
Using a combination of thresholding the absolute intensity and

ridge detection algorithms, the (pixellated) boundary of each cell
was identified, frame by frame. Cell area was quantified by
counting the total number of pixels inside the boundary for each
cell in each frame. We compute the precision of our measure-
ments in several different ways. First, we vary the threshold for
cell edge detection over a 10% range (± 5% of the value used for
all image analysis) and find that the area of each cell is changed
by ∼2% at the beginning of each cell cycle; this number de-
creases further as the cell grows. Second, we perform control
experiments with more frequent sampling (30 frames per min-
ute) and use bootstrapping methods to estimate the error bars on
the precision of our single-cell measurements in our experi-
ments, which are performed at 1 frame per minute. Third, we
examine the fluctuation in the areas of cells that do not grow
during the course of the experiment but are not dead (a condi-
tion that is controlled by the media), at 1 frame per minute. The
measurement uncertainty of a single-cell area is <2%. Because

Iyer-Biswas et al. www.pnas.org/cgi/content/short/1403232111 1 of 8

www.pnas.org/cgi/content/short/1403232111


we obtain between 4,000 and 16,000 growth curves at each
temperature, the ensemble-averaged mean area at a given in-
stant of time has an uncertainty of <0.03%.
The division times are taken to be the minima of the area vs.

time curves. We estimate that the error in division times is less
than 2 min (twice the inverse frame rate). Because the coefficient
of variation (ratio of the SD to the mean) of the division-time
distributions at all temperatures is ≈0.13 (see the following
section), the SE in the mean division times at each temperatures
(with 4,000–16,000 points) is 0.01–0.03 min.

3. Determination That the Growth Law Is Exponential
3.1. Fitting Individual Trajectories. The Langevin model for sto-
chastic exponential cell-size growth is given by Eq. 4 of the main
text and is used to find the correct procedure for ensemble av-
eraging the growth curves to obtain the time evolution of the
mean cell size, i.e., the growth law(s). Upon integrating this
equation,

e−κðTÞt=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt;TÞ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að0;TÞ
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0
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�
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�
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Thus, the time evolution of the square of the ensemble-averaged
mean of the square root of the size is exponential:

D ffiffiffiffiffiffiffiffiffiffiffiffiffi
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p E2
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Using this result, at each temperature we fit the growth data for
each generation,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt;TÞp

vs. t, with the best exponential fit, to
find κ=2 and thus κ.
Because the mean and SD of the growth rates and division

times evaluated by considering different generations of the same
cell were equal to the same quantities evaluated across different
cells at a given generation, the ergodic condition that ensemble
averaging equals generational averaging holds for these data.
Therefore, we do not see a systematic change in the reproductive
output of a given cell from generation to generation, under these
growth conditions.
A related issue is that of intergenerational correlations in these

quantities. We find that there is a small but observable anti-
correlation between the initial size of the cell and its division time
at the end of that generation (but no correlation between the
initial size and the growth rate) at all temperatures. This mild
anticorrelation serves to restore the (absolute) size of a cell to the
ensemble average and prevents “runaway” cells, i.e., larger
(smaller) than average cells from getting progressively larger
(smaller), compared with the ensemble mean, due to noisy rel-
ative size thresholding at division.

3.2. Distinguishing Between Functional Forms. Which functional
form best fits the ensemble-averaged mean growth law, i.e., the
increase of mean cell size with time in balanced growth con-
ditions, has been debated. The two main contenders are the linear
and exponential forms (6–9).
An important reason why ascertaining the growth law, beyond

a reasonable doubt, has been an experimental challenge is be-
cause extraordinary (statistical) precision is required to distin-
guish an exponential from a straight line when each growth period
is less than the time constant of the exponential. This can be seen
by estimating the minimum precision required for discriminating
between the two functions, by considering the geometrical aspects
of exponential and linear curves for a given mean growth period
hτi, and a relative division threshold θ≡ haðτÞi=hað0Þi (10) [Fig.
2B (main text) and Fig. S7]. The time at which the exponential
curve deviates most from the straight line is then found to be

τm = hτi 1
ln θ

ln
�
θ− 1
ln θ

�
: [S3]

The maximal difference between the predicted sizes for the expo-
nential and linear models ðΔamaxÞ is thus the difference between
the sizes predicted using each model at time τm:

Δamax = hað0Þi
�
1+ ðθ− 1Þ

�
τm
hτi−

1
ln θ

��
: [S4]

Thus, the minimum precision of measurement required to dis-
tinguish between these models is determined by whether
Δamax � σðτmÞ or not, where σðtÞ is the SD in a observed at
time t. Scaling Δamax by the predicted size at τm for the ex-
ponential model and defining f ðθÞ≡ ðθ− 1Þ=ln θ, we thus arrive
at the minimum precision required for distinguishing between the
two models.

minimum precision=
hað0Þihτi½1+ f ðθÞðlnðf ðθÞÞ− 1Þ�

hað0Þi½hτi+ τmðθ− 1Þ�
=
1+ f ðθÞ½lnðf ðθÞÞ− 1�

1+ f ðθÞlnðf ðθÞÞ : [S5]

The required precision is ≈4% for a division size ratio of θ= 1:8,
as is observed in our experiments. Because error in our mean
area measurements is less than 0:03%, we can indeed unequiv-
ocally distinguish between exponential and linear growth.
To quantify the goodness of fit for both the exponential and

linear fits, and to establish that the statistically preferred model is
the exponential one, we use the following prescription. We recall
that the ensemble-averaging procedure that correctly accounts for
the cancellation of the noise contribution from ηðtÞ, for the model
of stochastic growth proposed, is to find the root-mean-square of
the area h ffiffiffiffiffiffiffiffi

aðtÞp i2 at each observation time (a noise model with
additive noise or linear multiplicative noise is contradicted by the
scaling of cell-size distributions observed). In this ensemble-
averaging procedure, no ad hoc subtraction of or division by the
initial size to de-trend the noise is necessary. If the growth law
were linear rather than exponential, then h ffiffiffiffiffiffiffiffi

aðtÞp i2 should fit
better to a model that is of the form ct+ d, where c and d are
parameters of the linear model. The exponential fit has χ2 ≈ 50
for all temperatures (Table S1), compared with χ2 ≈ 1; 000 for
the best linear fits (Table S1). Because both models, exponential
and linear, have the same number of degrees of freedom, two
fitting parameters each (i.e., the mean initial size and the mean
growth rate), the Akaike information-theoretic criterion index
(AIC) (11) for each is simply given by its respective χ2-value.
Clearly the χ2-value for the exponential model is much smaller
than that for the linear growth model. However, we can use the
AIC to determine the relative likelihood that the linear model is
the correct description of data, not the exponential. Using
exp½ðAICexp −AIClinÞ=2�, we find that it ranges from 10−70
to 10−500 for the different temperatures (the variability in the
value coming from the differences in total numbers of growth
curves at each temperature). Therefore, statistical measures of
model selection overwhelmingly favor the exponential form.
We note that the residuals for the exponential fit in Fig. S5C have

additional structure, not fully explained by a model that assumes
a constant (time-independent) mean growth rate. We believe that
the systematic behavior in the residual for the exponential fit sug-
gests that there may be a small growth phase (cell age) dependence
to the growth rate, reflecting specific underlying growth–division
processes, such as restructuring of the cell for formation of end caps
and the constricting of the division plane; this is an interesting av-
enue for future inquiry. Here, we have used the constant growth
rate model because it is the most economical model to explain the
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overwhelming majority of observations. We thus conclude that the
growth law for these cells, under the conditions described in the
text, is exponential.
We note that a formal comparison with other growth laws

is also possible. The exponential fit compares favorably with a
quadratic function (the simplest higher-order polynomial) too.
Geometric considerations similar to those detailed above indicate
that the minimum precision required to discriminate between
exponential and quadratic growth laws is ≈0.1%, which is within
our statistical precision. The best fits for the quadratic have
coefficients for the quadratic term that are approximately equal
(within a factor of 1.2–1.5 times) to the quadratic coefficient of
the series expansion of the exponential function. To quantify the
statistical significance of the goodness of each fit, we have used
the Bayesian information criterion (BIC) (12), a common in-
formation-theoretic measure for weighing models with different
numbers of fitting parameters (the quadratic has one additional free
parameter over the exponential). The BIC for the quadratic fit is
greater than that for the exponential by more than 11, which is very
strong evidence against the quadratic. In summary, the quadratic fit
is comparable in quality to the exponential fit but has an additional
free parameter, and we thus favor the exponential.

4. Fitting the Data
4.1. Mean Division Times. The mean values of the division times at
34, 31, 28, 24, and 17 °C are 56, 72, 76, 98, and 201 min, re-
spectively. In the main text we show that, if the individual rates
of the Hinshelwood cycle exhibit an Arrhenius temperature de-
pendence (in general, with different activation energies), the
overall growth rate (equal to the geometric mean of the in-
dividual rates) varies similarly with temperature, with an effec-
tive activation energy equal to the arithmetic mean of the
individual barrier heights. The argument can be generalized to
other functional forms for the temperature dependence of the
mean growth rate (or division rate). Specifically, if the individual
rates instead follow the Ratkowsky form, kiðTÞ∼ ðT −T0Þ2 (13,
14), where T is absolute temperature and T0 is a parameter of
the empirical relation, we find by calculating the geometric mean
of the individual rates that the overall growth rate κðTÞ has the
following temperature dependence:

κðTÞ=T2

"	
1−

hT0i
T


2

−
σ2T0

T2 +O
	

1
T3


#
[S6]

≈ ðT − hT0iÞ2: [S7]

Thus, provided that the SD of the individual values of T0 is small
compared with their mean value, to leading order, the effective
growth rate also scales as a Ratkowsky form, with the effective
minimum temperature parameter equal to the arithmetic mean
of the individual values, irrespective of the number of steps in
the Hinshelwood cycle, up to leading order in temperature. We
note that no restriction on ΔEi is required for Eq. 3 of the main
text to hold in the Arrhenius case.

4.2. Size Distribution. The distribution of cell sizes, under balanced
growth conditions, is predicted to be a gamma distribution (15).
We rescale the initial size distributions at all temperatures
by their mean values (note that these distributions undergo
a scaling collapse and thus have the same shape), and the
resulting scaled distributions collapse to a single gamma dis-
tribution with a mean of 1. The only parameter of the distri-
bution left to be determined is the (dimensionless) shape
parameter; the value that we obtain for it by fitting is 16. Thus,
we obtain the mean-rescaled initial size distribution Pð~að0ÞÞ,
where ~að0Þ≡ að0Þ=hað0Þi.

4.3. Division-Time Distribution. The first passage time distribution
(i.e., the division-time distribution) for a cell that grows from an
initial size að0Þ to when it reaches a multiple θ of its initial size
θað0Þ, is a beta-exponential distribution (15),

Pðτj~að0ÞÞ= hκðTÞie−~að0ÞhκðTÞiτ�1− e−hκðTÞiτ
�ðθ−1Þ~að0Þ

beta½~að0Þ; ~að0Þðθ− 1Þ� ; [S8]

where beta is the beta function. Note that θ, the multiple of the
initial size to which each cell grows, was observed to be ≈1.76, on
average (see main text and Fig. S7). The mean growth rate hκðTÞi
is known from observations at each temperature (Table S1).
Moreover, the initial size distribution Pð~að0ÞÞ has also been de-
termined (see above). Therefore, the division-time distribution,

PðτÞ≡
Z

d~að0ÞPð~að0ÞÞPðτj~að0ÞÞ; [S9]

can be computed at each temperature without any additional fit-
ting parameters.
For the fit in Fig. 3B of the main text, we restricted ourselves to

data within ±20% of the mean growth rate because events out-
side of this range correspond to biological phenomena not in-
cluded in the simple model (which assumes a constant growth
rate), such as cells that become filamentous. However, these
outliers are included in the scatter plots in Fig. 2 A and B. The
coefficient of variation (ratio of the SD to the mean) of the di-
vision time distributions at all temperatures in the Arrhenius
range (17–34 °C) is ≈13%.

5. Scaling Behaviors Beyond the Arrhenius Range
As discussed in the main text, we have performed single-cell
experiments at 37 °C and 14 °C, temperatures that are, re-
spectively, higher and lower than the Arrhenius range [“normal
temperature range” (16)] for the mean growth rate, to investigate
scaling behaviors at these extreme physiological temperatures.
We have obtained data for between 2,000 and 4,000 generations
(growth curves) for both conditions. We find that the single-cell
growth law remains exponential for both these temperatures (Fig.
S10). The mean division time observed at 37 °C is 54 min and at
14 °C, 319 min; in contrast, if they had followed the Arrhenius law
(Fig. S11C), these values should have been ≈44 min and ≈237
min, respectively. Thus, the division rate observed at both tem-
peratures is significantly slower than predicted by the Arrhenius
law. However, the mean growth rate (of surviving cells) slows
down proportionally (Fig. S11A); as a result hτi and hκ−1i continue
to scale linearly with each other, as they do in the Arrhenius range.
Moreover, the initial cell size remains proportional to the size of
the cell at division even outside the Arrhenius range; at 37 °C the
mean value of the relative size threshold is 1.8 at both temper-
atures (Fig. S11B). Further, the mean-rescaled division-time dis-
tribution from 14 °C undergoes the same scaling collapse as the
remaining temperatures in the Arrhenius range (Fig. S11D) but
the distribution at 37 °C is slightly more noisy with COV ≈15%.
We believe that this additional stochasticity, compared with other
temperatures, is related to the onset of cell mortality—we observe
significant mortality at 37 °C and the increased filamentation rate
at this temperature. In Fig. S9 we show that the survival proba-
bility SðtÞ of a cell at 37 °C is an exponential function of time,
SðtÞ∼ e−νt. By fitting the observed survival distribution, we esti-
mate that ν, the probability per unit time that a cell may die, is 7%
per mean duration of a generation (54 min). The mean-rescaled
cell-size distributions from different times, at both temperatures,
undergo scaling collapses, as predicted by the SHC. We see an
increase in the initial cell size at both extreme temperatures,
compared with the temperatures in the Arrhenius range; at
present, we do not have an explanation for this observation.
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Fig. S1. Schematic of the experimental setup. (A) The microfluidic device (A1) creates a constant perfusion environment within the channel where imaging
occurs (A2); there is continuous fluid exchange through the output (A3). It consists of four individual channels, which are connected to capillary tubing to
create a sealed environment. Inputs of two different media may be connected at the upstream end. (B) The experimental apparatus. Each syringe is attached to
a separate syringe pump to allow midexperiment switching between media (B1); images are obtained using a Nikon Ti-E microscope with autofocus (B2), which
compensates for focal drift as the robotic XY stage holding the microfluidic device (B3) moves between multiple fields of view within the microfluidic channel
during the course of long-term experiments. (B4). Each component is controlled by a custom LabVIEW program that completely automates the process of data
acquisition after the experiment has been set up. (C) Image processing workflow. An example of the raw data (1,024 pixel × 1,024 pixel), a phase-contrast
image, is shown in (C1). Each image is then processed with the goal of accurately and robustly detecting cell edges (C2). Features are then identified (C3): the
processed images are thresholded to extract cell areas (white), and the point on each cell perimeter closest to the holdfast (red) is assumed to represent a near-
stationary point and used to track cells (i.e., to maintain cell identity between every frame of the movie). A typical cell trajectory obtained with the above
algorithm is shown (C4).

Fig. S2. From raw images to growth curves. Phase-contrast images such as the one shown in A are obtained for each field of view, for each time point, for an
experiment at a given temperature. The pixellated boundary (shown in red) of each cell in each frame is extracted by custom image processing algorithms,
which combine the absolute intensity level, the spatial gradients of the intensity levels, and a final thresholding step. By linking a sequence of processed
images, we obtain area values as a function of time (B) for each generation of each cell. The curves in B are plotted with t set equal to 0 at the beginning of
each generation. Data shown are from 5 cells (248 generations total) from an experiment performed at 31 °C.
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Fig. S3. Exponential growth of the longitudinal length of the cell. Data shown are from 5 cells (248 generations total) from an experiment performed at 31 °C.
Here we see that lðtÞ, the longitudinal length of the cell, grows exponentially with time t as evidenced by the straight lines on the semilog plot shown. “ln”
stands for the natural logarithm.
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Fig. S4. Alternative representation of exponential growth. The rate of change of the logarithmic size is plotted as a function of time. For an exponential
growth law, these curves should be parallel to the time axis, and the value of the vertical-axis intercept measures the growth rate κ for a cell. If the growth law
were linear, the slope of this line should change by a factor of 2, which it does not. (A) Each color represents data from one stalked cell, averaged over all its
generations. This averaging is denoted by h. . .igen. Data shown are from the experiment performed at 17 °C. Because the autocorrelation timescale in the
growth curves was estimated to be ∼15 min at this temperature, we consider time points separated by 20 min (>correlation time) to evaluate the change in the
logarithmic size, so as to ensure statistical independence of successive points. (B) Averaging for a representative cell: we show the 20 generations that con-
tributed to the black curve in A. “ln” denotes the natural logarithm.

Fig. S5. Schematic illustrating the challenge of discriminating exponential and linear models. For a cell growing from an initial size, að0Þ, to a multiple θ of the
initial size, i.e., θað0Þ, the linear (blue) and the exponential (red) fits (both passing through the initial and final points) maximally differ at a time τm and the
magnitude of the maximal difference is Δamax . The measurement precision has to be better than Δamax for model selection (between linear and exponential)
to be feasible. See SI Text, section 3.2 for discussion.

Iyer-Biswas et al. www.pnas.org/cgi/content/short/1403232111 5 of 8

www.pnas.org/cgi/content/short/1403232111


Fig. S6. Exponential vs. linear fits for the growth law. Experimental data (green) are fit by (A) red, exponential and (B) blue, linear functional forms. (C)
Residuals for exponential (red) and linear (blue) fits of the root-mean-square growth curve for fits in A and B. Data are for 17 °C (∼10,000 individual growth
curves contributing). See SI Text, section 3.2 for discussion.

Fig. S7. Distributions of the relative size threshold at different temperatures. The probability distribution of the relative size increase of each cell at division,
i.e., the ratio of size at division to initial size, aðτÞ=að0Þ, is shown for all generations and all temperatures in the Arrhenius range (purple, 34 °C; green, 31 °C;
orange, 28 °C; blue, 24 °C; gray, 17 °C). This plot shows that the distributions undergo a scaling collapse. The mean value is 1.76 and the COV is ∼8%.

Fig. S8. The Hinshelwood cycle yields exponential growth with a rate equal to the geometric mean of constituent rates. Illustrative example with an N= 8
Hinshelwood cycle (Fig. 4, main text). (A) Schematic reaction network corresponding to the cycle. (B) The rates can be collected in a matrix, K. In this notation
(15), each reaction Xi−1 →Xi−1 +Xi proceeds with rate

PN
j=1Kij   xj , where xi is the copy number of species Xi , Kij = ki   δi−1,j , and δ is the Kronecker delta; the index

0 is equivalent to N, closing the cycle. (C) The eigenvalues of K define the vertices of a regular polygon (here, an octagon, indicated by brown and blue filled
circles) in the complex plane. The eigenvalues λi are obtained from the roots of the characteristic equation, detjK− λ  1j= 0, or equivalently λ8 = k1k2 . . . k8. Thus,
there is always only one real positive root (blue), which has a magnitude equal to κ (15). This eigenvalue dominates the asymptotic dynamics and leads to
exponential growth of all xi with growth rate κ (Eq. 2, main text).
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Fig. S9. Survival probability distribution at 37 °C. The survival probability SðtÞ is observed to be an exponential distribution (straight line on a log-linear plot);
SðtÞ∼ e−νt , where ν is the probability per unit time that a cell dies, fits to 7% per mean duration of the generation of a cell (54 min). Data are from 241 cells.
“ln” denotes the natural logarithm.
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Fig. S10. Exponential growth at extreme temperatures. The single-cell growth law is observed to be exponential (for surviving cells) even at extreme tem-
peratures: 14 °C (A) cyan and 37 °C (B) brown. Log-linear plots of the cell sizes as functions of time are shown. Growth data shown are for 80 generations for
each condition. “ln” denotes the natural logarithm.

Fig. S11. Scaling behaviors at extreme temperatures. Data shown are from 14 °C (cyan) and 37 °C (brown), respectively, from 2,000 and 4,000 growth curves,
with 50–200 time points each. Data from temperatures in the Arrhenius range are shown in gray for comparison (compare with Figs. 1–3 in the main text). (A)
Linear scaling of the division timescale with the growth timescale; the slope of the best-fit line (dashed black) is 1.8. (B) Relative size thresholding of single cells;
the slope of the best-fit straight line (dashed black) is 1.8. (C) Breakdown of Arrhenius scaling of the mean division rate, at extreme temperatures. The Ar-
rhenius and Ratkowsky fits (Fig. 3A, main text) are shown for comparison. (D) The mean-rescaled division-time distributions at both these temperatures are
superimposed on those from temperatures in the Arrhenius range. “ln” denotes the natural logarithm.
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Fig. S12. Superposition of curves I (red), II (blue), and III (green) from Fig. 5A.

Table S1. Parameters and goodness of fit measures for exponential and linear models of
growth

Tð°CÞ Nens

n
h ffiffiffiffiffi

a0
p i2ðμm2Þ, hκiðmin−1Þ

o n
cðμm2Þ,dðmin−1Þ

o
χ2exp χ2lin Improbability index

17 9,634 f1:6,0:0028g f1:6,0:005g 50 2,200 1:0× 10−500

24 4,224 f1:7,0:0058g f1:6,0:012g 52 1,200 1:0× 10−200

28 4,769 f1:6,0:0075g f1:6,0:015g 56 1,300 1:0× 10−300

31 15,240 f1:6,0:0078g f1:6,0:015g 51 1,900 1:0× 10−400

34 13,340 f1:6,0:0099g f1:6,0:019g 32 1,400 1:0× 10−300

Columns are temperature, Tð°CÞ, the number of growth curves, Nens, the exponential model fit parameters
fh ffiffiffiffiffi

a0
p i2ðμm2Þ,hκiðmin−1Þg, the linear model fit parameters, fc  ð  μm2Þ,d   ðmin−1Þg, the χ2 value for the exponen-

tial fit, the χ2 value for the linear fit, and the improbability index for the linear fit.
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