
Supporting Information
Papadimitriou 10.1073/pnas.1416954111
SI Text

Complexity Definitions
An algorithm is an unambiguous sequence of elementary com-
putational steps that, when applied on an input (a given string of
symbols), always eventually terminates with an output (another
string of symbols), which stands in a particular relationship to
the input; this relationship characterizes the algorithm (and in
practice is its raison d’ être). If y is the output of algorithm A on input
x, we sometimes write y=AðxÞ. There are many standard formal
mathematical models, such as the Turing machine (main text),
which capture the notion of an algorithm, and all (with the fasci-
nating exception of the quantum computation model, which is
conjectured to be strictly more powerful than the rest when it comes
to polynomial time computation) agree on the essential points.
Algorithms are evaluated with respect to the time they require.

We say that algorithm A operates in time f ðnÞ, where f ðnÞ is
a function mapping the set of nonnegative integers to itself, if
when A is presented with an input of size n (a string with n
symbols, that is), it always operates in time f ðnÞ. An algorithm
that operates in in time pðnÞ, where p is some fixed polynomial
such as n3, is called a polynomial-time algorithm.
A problem—what an algorithm solves—is a particular specifi-

cation of how the output of the algorithm must stand in relation to
its input. In particular, a search problem ΠC is defined in terms of
a polynomial time algorithm C, which, given as input two strings
x; y, such that the length of y is at most a polynomial function of
the length of x, produces one of the two outputs: “yes” or “no.” ΠC
is then the following problem: Given an input x, produce an
output y such that algorithm C, on input x; y, outputs yes— such an
output is called a witness of x with respect to problem ΠC. Or, if no
witness y of x exists, produce the output “no witness exists.”
The class of all search problems is denoted NP; the 10 problems

identified in the main text are well-known examples of search
problems. Now P is the class of all search problems that can be
solved by polynomial time algorithms; again, a few examples are
given in the main text. (Traditionally, the classes NP and P are
defined not as classes of search problems, but as classes of lan-
guages—that is to say, infinite sets of strings of symbols. The ver-
sion of the formalism presented here focuses on output-producing
algorithms and is more appropriate for the focus of this paper.)
A reduction from search problem Π to search problem Ψ is

a pair of polynomial time algorithms R and T, with the following
property: Given an input x of problem Π, RðxÞ is an input of
problem Ψ; and if y is a witness of RðxÞ with respect to problem Ψ,
then TðyÞ is a witness of x with respect to the original problem Π.
Intuitively, a reduction from Π to Ψ is a method for establishing
that Ψ is “no easier” than Π. A problemΨ is called NP-complete if
it has the following property: For any search problem Π, there is
a reduction from Π to Ψ. Thus, an NP-complete problem is, in-
formally, at least as hard as any problem in NP; it is included
among the members of NP that are least likely to be in P.
We aremainly interested in the behavior of algorithms for larger

and larger inputs, but occasionally it is useful to define algorithms
with inputs and outputs in binary and of fixed input and output
size. Such algorithms are called circuits, because they can be
rendered as combinational Boolean circuits with the following
kinds of gates: n input gates, “and” gates, “or” gates, and “not”
gates. n of these gates are also designated output gates. Each gate

feeds into other, noninput gates, in such a way that no cycles are
created. Not gates have only one other gate feeding into them.
Circuits are used in the definition of the classes PPAD and PLS.

The problem “End of the line” is the following: For some n, we are
given a directed graph on 2n nodes, implicitly defined through two
circuits with n inputs and outputs, called S and P (for successor and
predecessor). If u≠ v are elements of f0; 1gn, we say that the graph
contains the edge ðu; vÞ if SðuÞ= v—that is, the circuit S with inputs
set to u has output v—and PðvÞ= u. Obviously, this graph has at
most one arrow entering, and at most one arrow leaving, each
node. Circuit P is such that Sð0nÞ= 0n, and so the all-zeros node
has no predecessor — it is a source. The problem is this: Given S
and P, find another source besides 0n or find a sink (a vertex with
no outgoing edges). It is easy to see that one of the two must exist.

Definition 1: PPAD is the class of all search problems that can
be reduced to End of the line.
The class PLS is defined in an analogous way. We are given two

circuits, S (for successor) and F (for potential function). The directed
graph again has 2n vertices, identified with all strings with symbols
0 and 1 of length n, and has an arrow from u to v if the following two
conditions hold: SðuÞ= v and FðvÞ>FðuÞ, where u> v means that
the two integers coded in binary by u and v are so related. Sink is the
following problem: Given two circuits S and F, find a sink of the
corresponding graph. It is again easy to see that a sink must exist.

Definition 2: PLS is the class of all search problems that can
be reduced to Sink.

Fitness Functions That Are Additive on Pairs of Loci
For a population with m genes with two alleles each, a fitness
function is any function fmapping f0; 1gm to the nonnegative reals.
Our proposed family of fitness functions capturing pairwise locus
interactions is defined as follows: Consider a weighted undirected
graph (undirected lines called edges connecting vertices), where the
genes are the vertices, and the set of edges is denoted by E. Assume
that all genes have two alleles, denoted by 0 and 1. For each edge
e= fi; jg (recall that an edge is a set of two genes) and each pair of
0− 1 values for xi and xj, there is a fixed a nonnegative weight we

xi;xj .
Then for all x1; . . . ; xm ∈ f0; 1g, the fitness or the genotype
ðx1; . . . ; xmÞ is defined as

f ðx1; . . . ; xmÞ=
X

fi;jg=e∈E
we
xi; xj :

The proof of Theorem 8 now proceeds as follows: We start
from the problem “Locally maximum weighted cut”: Given a
graph with weights on its edges, find a partition of the vertices
into two sets such that migrating any single vertex from one set to
the other does not increase the total weight of edges joining vertices
in different sets. This problem is known to be PLS complete. Fur-
thermore, this problem can be reduced to the problem of finding
a pure genotype that is a stable point of Eq. 5 of the main text
through the following transformation: Given a graph with m nodes
and weights ce on the edges, create a fitness function with pairwise
interactions between m genes, based on the same graph, and with
weights we

xi;xj = 1+ s · ce if xi ≠ xj and we
xi ; xj = 1 otherwise, where

the selection strength s is small, say m−2. It is easy to see that
a pure stable point of Eq. 5 corresponds to a locally maximum max
cut of the original weighted graph.

Papadimitriou www.pnas.org/cgi/content/short/1416954111 1 of 1

www.pnas.org/cgi/content/short/1416954111

