Supporting Information

Sequence, Cloning, and Analysis of the Fluvirucin B₁ Polyketide Synthase from Actinomadura vulgaris

Tsung-Yi Lin, Lawrence S. Borketey, Gitanjeli Prasad, Stephanie A. Waters, and Nathan A. Schnarr* Department of Chemistry, University of Massachusetts, 710 N. Pleasant Street, Amherst, Massachusetts 01003 <u>schnarr@chem.umass.edu</u>

AT Specificity Results	S2
Sequence Comparisons for Flu and DEBS Modules	S4
Protein homology analysis of Flu-KR Sequence	S5
PAGE analysis of Fluvirucin KSATs and ACPs	S6
Flu-ACP loading experiment by AT	S7
Flu-KSAT3 loading	S11
NMR spectra	S12

Figure S1. Expected AT Specificities : Results from SEARCHPKS

Mod 1

						Mat	ching all know	n AT domains	with your sequence
Quer	Query is the potential AT in your sequence								
I	DOMAIN		E-VALUE	%IDENTITY	%P(OSITIVE	S Substrate	ActivesiteMotif	
Your_	AT_sequ	ienc	e of					QQGHSQGRSHTNV	
nidda	a mod04	AT	7e-85	53		65	Methylmalonate	QQGHSQGRSHTNV	
ampho	o mod01	AT	1e-81	49		62	Methylmalonate	QQGHSQGRSHTSV	
nidda	a mod05	AT	3e-81	48		63	Ethylmalonate	QQGHSQGRGHTNV	
rifar	n mod07	AT	7e-81	50		62	Methylmalonate	QQGHSQGRSHTNV	
rifar	n mod04	AT	2e-80	50		63	Methylmalonate	QQGHSQGRSHTNV	
ampho	mod11	AT	1e-79	48		63	Methylmalonate	OOGHSOGRSHTSV	
pimar	mod07	AT	3e-79	50		62	Methvlmalonate	OOGHSOGRSHTNV	
aver	n mod01	AT	4e-79	50		63	Methylmalonate	OOGHSOGRSHTNV	
averi	n mod07	AT	46-79	50		63	Methylmalonate	OOGHSOGRSHTNV	
nysta	a mod01	AT	4e-78	49		61	Methylmalonate	QQGHSQGRSHTNV	

Mod2

Matching all known AT domains with your sequence

Query is the potential AT in your sequence

DOMAIN	E-VALUE	%IDENTITY	%POSITIVES	Substrate	ActivesiteMotif
Your AT sequen	ce				QQGHSLGRFHNHV
averm mod08 AT	4e-87	56	63	Malonate	QQGHSLGRFHAQV
averm mod04 AT	9e-87	56	63	Malonate	QQGHSLGRFHAQV
averm mod02 AT	1e-86	57	64	Malonate	QQGHSLGRFHAQV
averm mod03 AT	1e-86	56	63	Malonate	QQGHSLGRFHAQV
averm mod05 AT	3e-86	56	63	Malonate	QQGHSLGRFHAQV
ampho mod13 AT	3e-82	49	65	Malonate	QQGHSIGRFHTHV
nysta mod13 AT	6e-79	48	63	Malonate	QQGHSIGRFHTHV
ampho mod03 AT	8e-79	47	63	Malonate	QQGHSIGRFHNHV
nysta mod04 AT	3e-78	50	65	Malonate	QQGHSIGRFHNHV
nysta mod03 AT	9e-78	47	63	Malonate	QQGHSIGRFHNHV

Mod3

Matching all known AT domains with your sequence

Query is the potential AT in your sequence

DOMAIN	E-VALUE	%IDENTITY	%POSITIVES	Substrate	ActivesiteMotif
Your AT sequence	e				QQGHSQGRSHTNV
pimar mod07 AT	e-104	61	73	Methylmalonate	QQGHSQGRSHTNV
ampho mod11 AT	e-101	58	72	Methylmalonate	QQGHSQGRSHTSV
ampho mod01 AT	1e-98	57	70	Methylmalonate	QQGHSQGRSHTSV
nysta mod01 AT	4e-98	58	71	Methylmalonate	QQGHSQGRSHTNV
nysta modll AT	7e-98	58	71	Methylmalonate	QQGHSQGRSHTNV
nidda mod04 AT	9e-98	58	68	Methylmalonate	QQGHSQGRSHTNV
sorap mod07 AT	3e-93	55	68	Glycerate	QQGHSQGRSHTNV
olean mod03 AT	1e-92	55	66	Methylmalonate	QQGHSQGRSHTNV
rifam mod03 AT	2e-92	54	69	Methylmalonate	QQGHSQGRSHTNV
olean mod01 AT	3e-92	55	66	Methylmalonate	QQGHSQGRSHTNV

Mod4

Matching all known AT domains with your sequence

Query is the potential AT in your sequence

DOMAIN	E-VALUE	%IDENTITY	%POSITIVES	Substrate	ActivesiteMotif
Your_AT_sequence	ce				QQGHSLGR-RTQV
averm mod08 AT	2e-74	52	58	Malonate	QQGHSLGRFHAQV
averm mod04 AT	3e-74	52	58	Malonate	QQGHSLGRFHAQV
averm mod02 AT	7e-74	52	58	Malonate	QQGHSLGRFHAQV
averm mod03 AT	7e-74	52	58	Malonate	QQGHSLGRFHAQV
averm mod05 AT	2e-73	52	58	Malonate	QQGHSLGRFHAQV
ampho mod13 AT	2e-68	45	60	Malonate	QQGHSIGRFHTHV
nysta mod04 AT	5e-66	46	60	Malonate	QQGHSIGRFHNHV
ampho mod03 AT	2e-65	43	58	Malonate	QQGHSIGRFHNHV
nysta mod03 AT	7e-65	43	57	Malonate	QQGHSIGRFHNHV
pimar mod05 AT	2e-63	44	57	Malonate	QQGHSIGRFHGHV

Mod5

Matching all known AT domains with your sequence

Query is the potential AT in your sequence

DOMAIN	E-VALUE	%IDENTITY	%POSITIVES	Substrate	ActivesiteMotif
Your_AT_sequen	ce				QQGHSQGRSHTNV
nidda mod04 AT	7e-85	53	65	Methylmalonate	QQGHSQGRSHTNV
ampho mod01 AT	1e-81	49	62	Methylmalonate	QQGHSQGRSHTSV
nidda mod05 AT	3e-81	48	63	Ethylmalonate	QQGHSQGRGHTNV
rifam mod04 AT	3e-81	50	63	Methylmalonate	QQGHSQGRSHTNV
rifam mod07 AT	7e-81	50	62	Methylmalonate	QQGHSQGRSHTNV
pimar mod07 AT	5e-80	50	62	Methylmalonate	QQGHSQGRSHTNV
ampho mod11 AT	1e-79	48	63	Methylmalonate	QQGHSQGRSHTSV
averm mod01 AT	3e-79	50	63	Methylmalonate	QQGHSQGRSHTNV
averm mod07 AT	3e-79	50	63	Methylmalonate	QQGHSQGRSHTNV
nysta mod01 AT	4e-78	49	61	Methylmalonate	QQGHSQGRSHTNV

Sequence Comparison Results for Flu and DEBS Modules

All sequence comparison done by BLAST of NCBI website. All modules listed in the column are used as query, and the modules listed in the row are used as subject.

Note1: In cases where the compared modules are of dramatically different sizes (i.e Flu Mod 1 vs. Flu Mod2) identities are related only to the KS-AT regions (regions of max identity) of the modules.

Note2: Comparison results in parentheses are results from reverse query/subject pairs.

Sequence comparison						
(Identities/Similarities)	Flu_Mod1	Flu_Mod2	Flu_Mod3	Flu_Mod4	Flu_Mod5	DEBS_Mod4
Flu_Mod1	100% /100%	61%/72%	81% /86%	60% /70%	80% /86%	49% /61%
Flu_Mod2	61% /72%	100% /100%	64% /75%	95% /96%	64% /75%	58% /72%
Flu_Mod3	81% /86%	64% /75%	100% /100%	63% /73%	74% /82%	50% /63%
Flu_Mod4	60% /70%	94% /96%	63% /73%	100% /100%	60% /70%	41% /56%
Flu_Mod5	80% /86%	64% /75%	75% /82%	60%/70%	100% /100%	49% /62%

Sequence comparison						
(Identities/Similarities)	DEBS_Mod1	DEBS_Mod2	DEBS_Mod3	DEBS_Mod4	DEBS_Mod5	DEBS_Mod6
DEBS_Mod1	100% /100%	49% /60%	48% /61%	56% /68%	49% /61%	59% /68%
DEBS_Mod2	(49%/60%)	100% /100%	48% /59%	52% /64%	50% /61%	49% /61%
DEBS_Mod3	(48%/61%)	(48%/59%)	100% /100%	56% /69%	48% /62%	51% /64%
DEBS_Mod4	(56%/68%)	(52% /64%)	(56%/69%)	100% /100%	57% /68%	(52% /64%)
DEBS_Mod5	(49% /61%)	(50% /61%)	(48% /62%)	57% /69%	100% /100%	(50% /61%)
DEBS_Mod6	(59%/68%)	(49% /61%)	(51%/64%),	52% /64%	50% /61%	100% /100%

Protein homology analysis of Flu-KR Sequence

KR domain comparison between Fluvirucin modules and other B1 type KR domains. The homology analyses are done by Clustal Omega method of EMBL-EBI website, compared with the results in the reference.

Ref: Keatinge-Clay, A. T. Chemistry & Biology, 2007, 14, 898-908

<u>Module</u>	Loop	Catalytic region	Lid
Ave1	HTAGI <mark>LDD</mark> AT-L	SSAAATFGAPGQANYAAANA	WGTWQGNGLADSDKARAYLDRRG
Tyl1	HTAGILDDAV-I	SSVTGT <mark>W</mark> GNAG <mark>Q</mark> GAYAAANA	WGLWGGGGMAAGAGEESLSRRG
Asc8	HTAAT <mark>LDD</mark> GI-L	SSAAAVLGSPG <mark>Q</mark> GN <mark>Y</mark> AAANA	WGMWHTT-STLTGQLDDADRDRIRRGG
Ave7	HAAGV <mark>LDD</mark> AT-I	SSAAGILGSAG <mark>Q</mark> GNYAAANA	dh
Ave9	HAAGV <mark>LDD</mark> AT-I	SSAAGILGSAG <mark>Q</mark> GNYAAANA	WGLWEEA-SGMTGHLAGTDHRRIIRSG
Rap10	HTAGVLDDGV-V	SSAAGVLGSAG <mark>Q</mark> GNYAVANA	dh
Flu1	HTAGVLDDGV-V	SSSAATLDSAG <mark>Q</mark> GN <mark>YSAAN</mark> A	WGLWEEA-SGMTGHLAGTDHRRIIRSG
Flu2	HAAGV <mark>GHDD</mark> VLV	SSGAAV <mark>W</mark> GSSG <mark>Q</mark> AS <mark>YAA</mark> ANA	DH
Flu3	HTAGVLDDGV-V	SSSAATLDSAGQGNYSAANA	WGLWEDA-SGLTAKLTGTDHDRIRRSG
Flu4	HAAGV <mark>VDD</mark> GV-I	SSSAATLDSAGQGNYSAANA	DH
Flu5	HTAGVLDDGV-V	SSSAGTLDSAGQGNYSAANA	WGLWHQP-SGMSAHLTTTDITRIEQAG
	. * .	** . ** *. ***	WGGWGGGGMMEDAGE-QLGRSG
			WGLWAPETGGMTNQLSELDLERLSRSG
			WGVWAPETGGMTRQLGDIDLERLSRSG
			WGLWHQP-SGMSAHLTTTDITRIEQAG
			** * *

Note: DH, functional; dh, nonfunctional PKS abbreviations: Ave: Avermectin Tyl: Tylosin Asc: Ascomycin Rap: Rapamycin Flu: Fluvirucin B₁

Figure S2. PAGE of Fluvirucin KSATs and ACPs on 4-20% gel

Flu-ACP loading experiment by AT:

To a mixture of ACP (50 μ M) and KS-AT (2 μ M) in 100mM pH 7.0 phosphate buffer (50 μ L total volume) containing 2.5 mM TCEP at 4°C was added appropriate SNAc thioester substrate (500 μ M). The mixture was incubated 4 °C for 30 min to achieve AT assisted acylation of the ACP. Sequence grade modified trypsin was added to prepare samples with final ratio trypsin:ACP to be 1:10 (w/w). The mixture was incubated for 60 min at 37 °C. Digestion was quenched by addition of equal volume of 10% formic acid. Digests were stored at -80 °C until analysis.

ACP loading:

Protein	Probe	Mass expected (m/z, z=+3)
ACP1/3/5	-	896.8
ACP1/3/5	Ethyl-malonyl-SNAc	954.3
ACP1/3/5	Methyl-malonyl-SNAc	947.3
ACP1/3/5	Malonyl-SNAc	940.4

Figure S5. FluAT5 substrate selectivity

Flu-KSAT3 loading:

To a mixture of KSAT3 (25 μ M) in 100 mM pH 7.0 phosphate buffer (50 μ L total volume) containing 2.5 mM TCEP at 4°C was added appropriate SNAc thioester substrate (5mM). The mixture was incubated 4 °C for 60 min to achieve KS acylation. Sequence grade modified trypsin was added to prepare samples with final ratio trypsin:ACP to be 1:10 (w/w). The mixture was incubated for 60 min at 37 °C. Digestion was quenched by addition of equal volume of 10% formic acid. Digests were stored at -80 °C until analysis.

Protein	Probe	Mass expected(m/z, z=+2)
KSAT3	-	1667.6
KSAT3	3-hydroxy-butyric-SNAc	1710.1

Ethylmalonyl-SNAc

¹H NMR

¹³C NMR

Methylmalonyl-SNAc

¹³C NMR

Malonyl-SNAc

¹H NMR

