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This supplementary document include Stage II, proof of Theorem 1, wild bootstrap

procedure, and detailed information of simulation setting and real data analysis for reader’s

reference. It includes the descriptive statistics of signal-to-noise ratio (SNR), names and

corresponding MAFs of SNPs, demographic information of the selected genes PICALM,

CR1, and CD2AP and names and sizes in number of voxels of detected brain regions for 3

selected genes.

Stage II

Similar to Stage I, the key idea of AET is to build a sequence of L(β(v)|Y, B(v, h)) for

h0 = 0 < h1 < · · · < hS = r0 at each voxel v ∈ V and then sequentially determine adaptive

weights ωβ(v, v′;hs) for all v′ ∈ B(v, hs) based on {β̂(v′, hs−1) : v′ ∈ B(v, hs)} for all v ∈ V

and s = 1, . . . , S. A path diagram of AET for β(v) is given as follows:

h0 = 0 < h1 < · · · < hS = r0

B(v, h0) = {v} ⊂ B(v, h1) ⊂ · · · ⊂ B(v, hS)

⇓ ⇓ ↗ · · · ↗ ⇓

{Σ̂Y (v) : v ∈ V} ωβ(v, v′;h1) · · · ωβ(v, v′;hS = r0)

⇓ ↗ ⇓ ↗ · · · ↗ ⇓

{β̂(v) : v ∈ V} {β̂(v;h1) : v ∈ V} · · · {β̂(v;hS) : v ∈ V}.

Since many key tuning parameters in this AET procedure are similar to those used in Stage

I, we just highlight several key differences as follows.

To estimate β(v) at voxel v, we utilize all the data {Y(v′) : v′ ∈ B(v, h)} to construct

the weighted log-likelihood function for a voxel v at scale h, which is given by

`obs(β(v);h) = −0.5
n∑
i=1

∑
v′∈B(v,h)

ωβ(v, v′;h){Y(v′)−Xβ(v)}T Σ̂Y (v′)−1{Y(v′)−Xβ(v)}.

(1)
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By directly maximizing `obs(β(v);h), we can obtain the maximum weighted likelihood esti-

mate of β(v), denoted by β̂(v;h), which is given by

{Σn,1(v;h)}−1XT
∑

v′∈B(v,h)

ωβ(v, v′;h){Σ̂Y (v′)}−1Y(v′), (2)

where Σn,1(v;h) =
∑

v′∈B(v,h) ωβ(v, v′;h)XT {Σ̂Y (v′)}−1X. The covariance matrix of β̂(v;h)

can be approximated by

Cov(β̂(v;h)) ≈ Σn(β̂(v;h)) = {Σn,1(v;h)}−1XTΣn,2(v;h)X{Σn,1(v;h)}−1, (3)

where Σn,2(v;h) is given by

∑
v′,v′′∈B(v,h)

ωβ(v, v′;h)ωβ(v, v′′;h)Σ̂Y (v′)−1{Y(v′)−Xβ̂(v′)}{Y(v′′)−Xβ̂(v′′)}T Σ̂Y (v′′)−1.

The adaptive weights are given by

ωβ(v, v′;h) = Kloc(||v − v′||2/h)Kst(Dβ(v, v′;h)/Cn), (4)

where Dβ(v, v′;hs−1) is set as

{β̂(v;hs−1)− β̂(v′;hs−1)}T {Cov(β̂(v))}−1{β̂(v;hs−1)− β̂(v′;hs−1)}. (5)

Based on β̂(v;h), we can further construct test statistics to examine scientific questions

regarding β(v). These questions can be formulated as linear hypotheses about β(v),

H0,µ : R1β(v) = b0 vs. H1,µ : R1β(v) 6= b0, (6)

where µ = R1β(v), R1 is a r × k matrix of full row rank and b0 is a r × 1 specified vector.

We test the null hypothesis H0,µ : R1β(v) = b0 using the Wald test statistic

Wµ(v;h) = {R1β̂(v;h)− b0}T {R1Σn(β̂(v;h))RT1 }−1{R1β̂(v;h)− b0}. (7)

Under H0,µ, Wµ(v;h) is asymptotically distributed as χ2(r) (?).
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Proof of Theorem 1

It is shown that the REML estimation of covariance is invariant to the choice of Kx (Searle

et al, 1992, Ch.6). Without loss of generality, we may assume KxK
T
x = In−p, where In−p

is an (n − p) × (n − p) identity matrix. Also, since the matrix KxZ
T ILZK

T
x = Ω is

positive semidefinite, there exists an (n− p)× (n− p) orthogonal matrix U and a diagonal

matrix D0 = diag{d1, . . . , dn−p} such that Ω = UD0U
T , where the columns of U are the

eigenvectors of Ω and di, i = 1, · · · , n− p are the corresponding eigenvalues. Under the null

hypothesis σ2γ(v) = 0, Y ∗(v′) is distributed as N(0, σ2e(v
′)In−p). Therefore, we have the

following results:

• σe(v′)−1UTY ∗(v′)
d∼ N(0n−p, In−p) and 1

σe(v′)
√

1+λ(v′)di
uTi Y

∗(v′)
d∼ N(0, 1

1+λ(v′)di
),

where ui is the ith eigenvector of Ω. Also,

1

σe(v′)
{In−p + λ(v′)D0}−

1
2UTY ∗(v′)

d∼ N(0n−p, [In−p + λ(v′)D0]
−1). (8)

• The determinant of σ2e(v
′){In−p + λ(v′)Ω} equals σe(v

′)2(n−p)
∏n−p
i=1 {1 + λ(v′)di}.

• Since the actual dimension of Ω is at most L, we have di = 0 for i = L+ 1, . . . , n− p.

Then, `REML(Y ∗(v′) | Z, σ2e(v′), σ2γ(v) ≥ 0)− `REML(Y ∗(v′) | Z, σ2e(v′), σ2γ(v) = 0) can be

approximated by

1

2σ2e(v
′)

(Y ∗(v′)TY ∗(v′)− Y ∗(v′)T {U [In−p + λ(v′)Ω]UT }−1Y ∗(v′))− 1

2

L∑
i=1

log(1 + λ(v′)di)

D
=

1

2
{
n−p∑
i=1

z2i (v′)−
L∑
i=1

log(1 + λ(v′)di)−
n−p∑
i=1

z2i (v′)

1 + λ(v′)di
}

D
=

1

2
{
L∑
i=1

z2i (v′)λ(v′)di
1 + λ(v′)di

−
L∑
i=1

log(1 + λ(v′)di)} =
1

2
D(v′), (9)
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where the zi(v
′)’s are mutually independent for all i = 1, · · ·n− p and normally distributed

with mean 0 and variance 1. Finally, we have

RLRTn(v) = 2 sup
σ2
γ(v)≥0

{LREML(σ2γ(v) | Y ∗, B(v, h))− LREML(0 | Y ∗, B(v, h))}

= 2 sup
σ2
γ(v)≥0

∑
v′∈B(v,h)

ω(v, v′, h){`REML(Y ∗(v′) | Z, σ̂2e(v′), σ2γ(v) > 0) (10)

− `REML(Y ∗(v′) | Z, σ̂2e(v′), σ2γ(v) = 0)}

D
= sup

σ2
γ(v)≥0

{
∑

v′∈B(v,h)

ω(v, v′, h)D(v′)}.

Wild Bootstrap Procedure

Let ΣY ∗(v) = σ2γ(v)Ω + σ2e(v)In−p and transform Y∗(v) into Ỹ∗(v) = UTΣY ∗(v)−1/2Y∗(v)

such that Ỹ∗(v) ∼ N(0, In−p). It follows from Ω = UD0U
T that

Ỹ∗(v) = (ỹ1(v), · · · , ỹn−p(v))T = {σ2e(v)In−p + σ2γ(v)D}−1/2UTY∗(v). (11)

We develop a wild bootstrap procedure as follows.

• Step 1. Define a grid 0 = λ1(v) < λ2(v) < · · · < λM (v) of M possible values for λ(v).

• Step 2. Generate ξ
(s)
l independently from N(0, 1) for l = 1, . . . , n− p.

• Step 3. For every grid point λm(v), calculate an approximation of D(v′;λm(v)/σ̂2e(v))

as follows:

D̂(s)(v′;λm(v)/σ̂2e(v)) =

n−p∑
l=1

ξ
(s)
l {ỹ

2
l (v
′)− 1}dlλm(v)/σ̂2e(v

′) + dlλm(v)/σ̂2e(v
′)

1 + dlλm(v)/σ̂2e(v
′)

−
n−p∑
l=1

log(1 + dlλm(v)/σ̂2e(v
′)). (12)

Since the samples are generated independently among voxels which does not take the

spatial correlation of the imaging measurements into consideration, the samples in
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(12) are generated from the original imaging data instead in order to address this

limitation.

• Step 4. Calculate

RLRT(s)
n (v) = sup

1≤m≤M
{

∑
v′∈B(v,h)

ω(v, v′;h)D̂(s)(v′;λm(v)/σ̂2e(v
′))}. (13)

• Step 5. Repeat Steps 1-5 for S iterations.

• Step 6. Approximate the p-value of RLRTn(v) based on an approximation given by

RLRTn(v)
D
≈ a0u0d0, (14)

where u0 ∼ Bernoulli(1 − p0), d0 ∼ χ2
1 are independent random variables, p0 =

P (u0 = 0) and a0 are unknown constants, and
D
≈ denotes approximate equality in

distribution. Considering computational efficiency, instead of generating many boot-

strap samples, we estimate the parameters a0 and p0 in the approximation (14) as

follows:

â0 =
∑

v′∈B(v,hS)

ω(v, v′;hS)ã0 , p̂0 =
∑

v′∈B(v,hS)

ω(v, v′;hS)p̃0, (15)

where

p̃0 = 1− 3
{
∑S

s=1 RLRT
(s)
n (v)}2

S
∑S

s=1 RLRT
(s)
n (v)2

and ã0 =

∑S
s=1RLRT

(s)
n (v)

S(1− p̂)
. (16)

Computationally, the above algorithm is quite efficient. First, we only need to compute

Ỹ∗(v) once for all voxels. Second, Ω is fixed and thus it is straightforward to compute its

eigenvalues and eigenfunctions. Third, all σ̂2e(v) are calculated once at Step I.1. Fourth, to

choose grid points of λ(v), we set M = 50 and λM (v) = 3 maxv′∈V σ̂
2
γ(v′).

Simulation Results
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Table 1: Simulation setting: descriptive statistics of SNRs for 10 regions of σ2γ(v) from a

simulated data set of Scenario I, in which the SNPs are extracted from the chromosome 1

in ADNI.

σ2γ(v) Number of voxels Mean Standard Deviation Min Max

0 4749 0.124 0.062 0.024 0.412

0.0050 207 0.819 0.572 0.003 2.745

0.0075 135 1.010 0.774 0.006 3.340

0.0100 111 1.123 0.815 0.021 3.714

0.0125 147 1.270 1.014 0.043 4.303

0.0150 75 1.262 1.026 0.025 4.074

0.0175 48 1.334 1.150 0.034 5.930

0.0200 144 1.436 1.060 0.019 3.940

0.0225 111 1.687 1.191 0.036 4.886

0.0250 81 1.877 1.366 0.020 6.674
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Table 2: Simulation setting: descriptive statistics of SNRs for 10 regions of σ2γ(v) from a

simulated data set of Scenario II, in which the SNPs are extracted from the gene PICALM

in ADNI.

σ2γ(v) Number of voxels Mean Standard Deviation Min Max

0 4749 0.111 0.055 0.022 0.357

0.005 207 0.189 0.136 0.001 0.699

0.010 135 0.234 0.188 0.001 0.854

0.015 111 0.301 0.246 0.003 1.092

0.020 147 0.349 0.274 0.003 1.307

0.025 75 0.337 0.282 0.004 1.111

0.030 48 0.365 0.257 0.0005 0.996

0.035 144 0.424 0.283 0.003 1.324

0.040 111 0.491 0.443 0.010 1.008

0.045 81 0.500 0.403 0.034 1.909
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Table 3: ADNI data analysis: the minor allele frequency (MAF) in % of selected SNPs on

PICALM, CR1, and CD2AP

PICALM

rs618679 22.1 rs2077815 22.6 rs666692 48.9 rs527162 22.1

rs10898427 21.2 rs11234495 24.8 rs664629 37.0 rs680119 40.7

rs510566 22.9 rs10501602 8.8 rs1774523 19.4 rs10501608 17.2

rs10501604 17.4 rs713346 25.2 rs1941375 27.3 rs10792821 21.0

rs475639 48.0 rs669336 18.8 rs677909 31.6 rs642949 37.5

rs7938033 42.7 rs10792820 25.3 rs11234532 10.2

CR1 CD2AP

rs1571344 13.7 rs2025935 31.5 rs9296559 26.9 rs9473121 32.8

rs4310446 18.1 rs11117959 19.3 rs12523687 10.0 rs9395267 10.4

rs10127904 29.4 rs650877 19.9 rs1385741 39.0 rs9296562 40.1

rs3737002 27.5 rs11118131 19.0 rs6458573 32.9 rs13191654 22.4

rs677066 21.9 rs6691117 21.8 rs3818866 26.3 rs9395285 26.6

rs3818361 19.7 rs6701713 19.7 rs6936622 11.0 rs1485780 26.9

rs12734030 17.9 rs12034383 41.0 rs1485781 32.9 rs9349417 26.9

rs1408077 19.1 rs10779339 49.7 rs10948367 26.9
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Table 4: ADNI data analysis: demographic information of the 328 subjects in the dataset

investigating the effects of PICALM. For the categorical variables: gender, handedness

and risk of APOE, the numbers are the frequencies for the corresponding groups. For the

continuous variables: baseline age, baseline ICV and years of education, and the numbers

are the mean (standard deviation) of each variable in each group.

Healthy Control Alzheimer’s Disease

Total 176 152

Male (Female) 99 (77) 84(68)

Right (Left) Hand Users 163 (13) 142(10)

Risk of APOE 3 2 31

2 41 68

1 111 49

0 22 4

Baseline Age 76.1 (5.1) 75.5 (7.6)

Baseline ICV 1.28× 106 (1.24× 105) 1.27× 106 (1.45× 105)

Years of Education 16.3 (2.7) 14.9 (3.2)
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Table 5: ADNI data analysis: demographic information of the 299 subjects in the dataset

investigating the effects of CD2AP. For the categorical variables: gender, handedness and

risk of APOE, the numbers are the frequencies for the corresponding groups. For the

continuous variables: baseline age, baseline ICV and years of education, and the numbers

are the mean (standard deviation) of each variable in each group.

Healthy Control Alzheimer’s Disease

Total 155 144

Male (Female) 84 (71) 77(67)

Right (Left) Hand Users 143 (12) 135(9)

Risk of APOE 3 3 38

2 37 64

1 97 49

0 18 3

Baseline Age 76.1 (5.2) 75.1 (7.5)

Baseline ICV 1.27× 106 (1.25× 105) 1.27× 106 (1.46× 105)

Years of Education 16.1 (2.8) 14.7 (3.1)
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Table 6: ADNI data analysis: the detailed significant brain regions affected by CD2AP

using FMEM. The regions with the ∗ means the regions are detected by FMEM and voxel-

based method; the regions with the ∗∗ means only detected by voxel-based method; the

regions with # means only detected by FMEM with healthy control only; the regions with

## means detected by FMEM with AD only; • means not applicable.

Brain Region Number of Voxels (right) Number of Voxels (left)

Superior temporal gyrus 167 •

Inferior temporal gyrus *369 378

Precentral gyrus *170 439

Middle frontal gyrus 127 *295

Postcentral gyrus 60# 183

Insula 53 74

Putamen *200# 123#

Fusiform 117## 306

Inferior parietal but supramarginal and angular gyri 87 •

Angular 433 •

Inferior frontal gyrus - triangular part *180 *79

Inferior occipital gyrus 269 •

Superior frontal gyrus 71 •

Supplementary Motor Area 117# •

Postcentral gyrus *104 *183

Superior frontal gyrus and medial 188 159

Anterior cingulate and paracingulate gyri 428 88

Median cingulate and paracingulate gyri 149 *116##

Calcarine fissure and surrounding cortex 53 266

Cuneus 151# 345

Superior occipital gyrus • 317

Middle occipital gyrus • *144

Precuneus 61 •

Paracentral Lobule 86 •

Pallidum • 58

Caudate • 197

Lingual • *114##

Inferior frontal gyrus - opercular part • *78

Inferior occipital gyrus • 133

Middle temporal gyrus • 394

Inferior frontal gyrus - orbital part • 61

Temporal pole: superior temporal gyrus **74 •

Temporal pole: middle temporal gyrus **61 •

ParaHipopcampal gyrus •

Inferior parietal but supramarginal and angular gyri • •

11



Table 7: ADNI data analysis: the detailed significant brain regions affected by CR1 using

FMEM. The regions with the ∗ means the regions are detected by FMEM and voxel-based

method; the regions with the ∗∗ means only detected by voxel-based method; the regions

with # means only detected by FMEM with healthy control only; the regions with ##

means detected by FMEM with AD only; • means not applicable.

Brain Region Number of Voxels (right) Number of Voxels (left)

Superior temporal gyrus 167 •

Inferior temporal gyrus 150# 378#,##

Precentral gyrus 170## *439##

Middle frontal gyrus 127#,## 295#,##

Postcentral gyrus 60 **65

Insula 53 74#

Putamen 200 *123

Fusiform 117# 306#

Inferior temporal gyrus 219 •

Inferior parietal but supramarginal and angular gyri 87 •

Angular 433 •

Inferior frontal gyrus, triangular part 180# *79

Inferior occipital gyrus 269 133

Superior frontal gyrus 71# •

Supplementary Motor Area 117 •

Postcentral gyrus 104# 183

Superior frontal gyrus, medial 188# 159

Anterior cingulate and paracingulate gyri 428 88

Median cingulate and paracingulate gyri 209 116

Calcarine fissure and surrounding cortex 53# 266##

Cuneus 151 345##

Superior occipital gyrus • 317##

Middle occipital gyrus 144 •

Precuneus 61 •

Paracentral Lobule 86## •

Pallidum 58 •

Caudate • 197

Lingual • 114##

Inferior frontal gyrus, opercular part • 78

Middle temporal gyrus • *394#,##

Inferior frontal gyrus, orbital part • 61

Hippocampus • •

Olfactory cortex • •

Gyrus rectus • •

Rolandic Operculum 76# •

Temporal pole: superior temporal gyrus • •
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Table 8: ADNI data analysis: the detailed significant brain regions affected by PICALM

using FMEM. The regions with the ∗ means the regions are detected by FMEM and voxel-

based method; the regions with the ∗∗ means only detected by voxel-based method; the

regions with # means only detected by FMEM with healthy control only; the regions with

## means detected by FMEM with AD only; • means not applicable.

Brain Region Number of Voxels (right) Number of Voxels (left)

Inferior frontal gyrus - triangular part 206 •

Inferior frontal gyrus - orbital part 213 •

Insula 363 •

Hippocampus 72 •

ParaHippocampal gyrus 72 **60

Amygdala 68 •

Fusiform 205 •

Putamen 144 •

Superior temporal gyrus 790 •

Temporal pole: superior temporal gyrus 472 •

Middle temporal gyrus 441 •

Temporal pole: middle temporal gyrus 127 •

Inferior temporal gyrus 402 •

Precentral gyrus 519 •

Middle frontal gyrus 588 •

Postcentral gyrus 404# •

SupraMarginal gyrus 350 •

Superior occipital gyrus 72 •

Middle occipital gyrus 834 •

Inferior parietal but supramarginal and angular gyri 239# •

Angular 491 •

Rolandic Operculum 76 •

Inferior frontal gyrus - opercular part 112 •

Superior frontal gyrus - orbital part 75 •

Middle frontal gyrus 375 •

Middle frontal gyrus - orbital part 338 •

Superior frontal gyrus 66 •

Median cingulate and paracingulate gyri • **51
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Figure 1: ADNI data analysis based on the combined HC and AD samples: the − log10(p)

maps for testing the genetic effect of CD2AP on RAVEN images by using FMEM from

14 selected slices. The first and second rows are obtained from FMEM, while the third and

fourth rows are obtained from Ge’s method. The colorbar of − log10(p) ranges from 2 to 40

for FMEM and from 1 to 3 for Ge’s method, respectively.
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Figure 2: ADNI data analysis based on either AD samples (the first four rows) or HC

samples (the last four rows): the − log10(p) maps for testing the genetic effect of CD2AP

on RAVEN images by using FMEM from 14 selected slices. The first, second, fifth, and

sixth rows are obtained from FMEM, while the third, fourth, seventh, and eighth rows are

obtained from Ge’s method. The colorbar of − log10(p) ranges from 2 to 40 for FMEM and

from 1 to 3 for Ge’s method, respectively. 15



Figure 3: ADNI data analysis based on the combined HC and AD samples: the − log10(p)

maps for testing the genetic effect of CR1 on RAVEN images by using FMEM from 14

selected slices. The first and second rows are obtained from FMEM, while the third and

fourth rows are obtained from Ge’s method. The colorbar of − log10(p) ranges from 2 to 40

for FMEM and from 1 to 3 for Ge’s method, respectively.
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Figure 4: ADNI data analysis based on either AD samples (the first four rows) or HC

samples (the last four rows): the − log10(p) maps for testing the genetic effect of CR1

on RAVEN images by using FMEM from 14 selected slices. The first, second, fifth, and

sixth rows are obtained from FMEM, while the third, fourth, seventh, and eighth rows are

obtained from Ge’s method. The colorbar of − log10(p) ranges from 2 to 40 for FMEM and

from 1 to 3 for Ge’s method, respectively. 17



Figure 5: ADNI data analysis based on the combined HC and AD samples: the − log10(p)

maps for testing the genetic effect of PICALM on RAVEN images by using FMEM from

14 selected slices. The first and second rows are obtained from FMEM, while the third and

fourth rows are obtained from Ge’s method. The colorbar of − log10(p) ranges from 2 to 40

for FMEM and from 1 to 3 for Ge’s method, respectively.
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Figure 6: ADNI data analysis based on either AD samples (the first four rows) or HC

samples (the last four rows): the − log10(p) maps for testing the genetic effect of PICALM

on RAVEN images by using FMEM from 14 selected slices. The first, second, fifth, and

sixth rows are obtained from FMEM, while the third, fourth, seventh, and eighth rows are

obtained from Ge’s method. The colorbar of − log10(p) ranges from 2 to 40 for FMEM and

from 1 to 3 for Ge’s method, respectively. 19


