Additional File 3: Checking some networks morphisms

Stoichiomorphism & homomorphism from MI to AM

This stoichiomorphism maps z, $\sim y \rightarrow x$.

	Species	Reactions	Reaction Network	Influence Network
AM	x_0, x_1, x_2	$am_0 = x_2 + x_0 \to x_0 + x_1 am_1 = x_1 + x_0 \to x_0 + x_0 am_2 = x_0 + x_2 \to x_2 + x_1 am_3 = x_1 + x_2 \to x_2 + x_2$	$X_0 \xrightarrow{\bullet} X_1 \xrightarrow{\bullet} X_2$	
MI	$y_0, y_1, y_2, z_0, z_1, z_2$	$\begin{aligned} mi_0 &= y_0 + z_0 \to z_0 + y_1 \\ mi_1 &= y_1 + z_0 \to z_0 + y_2 \\ mi_2 &= y_2 + y_0 \to y_0 + y_1 \\ mi_3 &= y_1 + y_0 \to y_0 + y_0 \\ mi_4 &= z_2 + z_0 \to z_0 + z_1 \\ mi_5 &= z_1 + z_0 \to z_0 + z_0 \\ mi_6 &= z_0 + y_0 \to y_0 + z_1 \\ mi_7 &= z_1 + y_0 \to y_0 + z_2 \end{aligned}$	$y_2 \xrightarrow{Q} y_1 \xrightarrow{Q} y_0 \xrightarrow{Q} z_1 \xrightarrow{Q} z_2$	y Z

The species map m(s) below (outer columns) yields a homomorphism over reactions. We then check that m preserves net stoichiometry $\eta(s,r)$, for all species in MI and all reactions in AM. For example the top left cell checks that $\eta(z_0,mi_0)+\eta(z_0,mi_4)=0=\eta(x_0,am_0)$.

$m^{-1}(\hat{r}) \subseteq MI$							
		mi_0, mi_4	mi_1,mi_5	mi_2, mi_6	mi_3, mi_7		
	z_0	0	1	-1	0	x_0	
	z_1	1	-1	1	-1	x_1	m(s)
e MI	z_2	-1	0	0	1	x_2	(S)
As 6	y_0	-1	0	0	1	x_2	7 Э
Δ	y_1	1	-1	1	-1	x_1	АМ
	y_2	0	1	-1	0	x_0	
		am_0	am_1	am_2	am_3		
			∀r̂ (∈ AM			

Therefore, by the stoichiomorphism theorem, trajectories of MI that start with $\forall s \in \{z_0, z_1, z_2, y_2, y_1, y_0\} \ [m(s)] = [s]$, coincide with trajectories of AM.

Stoichiomorphism & homomorphism from QI to MI

This stoichiomorphism maps $z, r \rightarrow z$ and $y, s \rightarrow y$.

	Species	Reactions		Influence Network
MI	$y_0, y_1, y_2, z_0, z_1, z_2$	$\begin{aligned} mi_0 &= y_0 + z_0 \rightarrow z_0 + y_1 \\ mi_1 &= y_1 + z_0 \rightarrow z_0 + y_2 \\ mi_2 &= y_2 + y_0 \rightarrow y_0 + y_1 \\ mi_3 &= y_1 + y_0 \rightarrow y_0 + y_0 \\ mi_4 &= z_2 + z_0 \rightarrow z_0 + z_1 \\ mi_5 &= z_1 + z_0 \rightarrow z_0 + z_0 \\ mi_6 &= z_0 + y_0 \rightarrow y_0 + z_1 \\ mi_7 &= z_1 + y_0 \rightarrow y_0 + z_2 \end{aligned}$		y Z
QI	$y_0, y_1, y_2, z_0, z_1, z_2, s_0, s_1, s_2, r_0, r_1, r_2$	$\begin{aligned} qi_0 &= s_0 + z_0 \rightarrow z_0 + s_1 \\ qi_1 &= s_1 + z_0 \rightarrow z_0 + s_2 \\ qi_2 &= s_2 + y_0 \rightarrow y_0 + s_1 \\ qi_3 &= s_1 + y_0 \rightarrow y_0 + s_0 \\ qi_4 &= r_2 + z_0 \rightarrow z_0 + r_1 \\ qi_5 &= r_1 + z_0 \rightarrow z_0 + r_0 \\ qi_6 &= r_0 + y_0 \rightarrow y_0 + r_1 \\ qi_7 &= r_1 + y_0 \rightarrow y_0 + r_2 \end{aligned}$	$qi_8 = y_0 + r_0 \rightarrow r_0 + y_1$ $qi_9 = y_1 + r_0 \rightarrow r_0 + y_2$ $qi_{10} = y_2 + s_0 \rightarrow s_0 + y_1$ $qi_{11} = y_1 + s_0 \rightarrow s_0 + y_0$ $qi_{12} = z_2 + r_0 \rightarrow r_0 + z_1$ $qi_{13} = z_1 + r_0 \rightarrow r_0 + z_0$ $qi_{14} = z_0 + s_0 \rightarrow s_0 + z_1$ $qi_{15} = z_1 + s_0 \rightarrow s_0 + z_2$	y - z

The species map m(s) below (outer columns) yields a homomorphism over reactions. We then check that m preserves net stoichiometry $\eta(s,r)$, for all species in MI and all reactions in AM. For example the top left cell checks that $\eta(z_0,qi_0)+\eta(z_0,qi_8)=0=\eta(z_0,mi_0)$.

		$m^{-1}(\hat{r})$									
		qi_0, qi_8	qi_1, qi_9	qi_2, qi_{10}	qi_3, qi_{11}	qi_4, qi_{12}	qi_5, qi_{13}	qi_6, qi_{14}	qi_7, qi_{15}		
	z_0	0	0	0	0	0	1	-1	0	z_0	
	z_1	0	0	0	0	1	-1	1	-1	z_1	
	z_2	0	0	0	0	-1	0	0	1	z_2	
	r_0	0	0	0	0	0	1	-1	0	z_0	
_	r_1	0	0	0	0	1	-1	1	-1	z_1	
Vs ∈ QI	r_2	0	0	0	0	-1	0	0	1	z_2	m(s)
	y_0	-1	0	0	1	0	0	0	0	y_0	(S)
	y_1	1	-1	1	-1	0	0	0	0	y_1	
	y_2	0	1	-1	0	0	0	0	0	y_2	
	s_0	-1	0	0	1	0	0	0	0	y_0	
	s_1	1	-1	1	-1	0	0	0	0	y_1	
	s_2	0	1	-1	0	0	0	0	0	y_2	
	•	mi_0	mi_1	mi_2	mi_3	mi_4	mi_5	mi_6	mi_7		
$\forall \hat{r} \in MI$											

We give an example of how this stoichiomorphism can yield an emulation from QI to MI for heterogeneous rates and initial conditions.

