Taylor et al. supporting information

S1) Equations used for estimation of reference crop evapotranspiration (ET₀)

PET (potential evapotranspiration, mm d⁻¹) was derived from daily mean values calculated from weather station data. With the exception of the approximation made for incoming solar radiation (R_s), which is based on information on p. 22 of Jones (1992), the methods follow recommendations made by Allen *et al.* (1998) for the calculation of reference crop evapotranspiration (ET₀). These methods assume a 'hypothetical reference crop with an assumed crop height of 0.12 m, a fixed surface resistance of 70 s m⁻¹ and an albedo of 0.23 reference surface' (Allen *et al.*, 1998) and meterological measurements made at 2 m height above the ground surface. The result is that aerodynamic resistance r_a (s m⁻¹) has the approximation 208/w, where w = windspeed (m s⁻¹).

$$ET_0 = \frac{0.408\varepsilon R_{net} + \gamma \frac{900}{T_{air} + 273} w\delta e}{\varepsilon + \gamma (1 + 0.34w)} \quad eqn. S1.1$$

 T_{air} is daily mean air temperature (°C), the average of daily maximum (T_{max} , °C) and minimum air temperatures (T_{min} , °C):

$$T_{air} = \frac{T_{min} + T_{max}}{2} \quad eqn. S1.2$$

w is daily mean windspeed at 2 m (m s⁻¹), calculated similarly to daily mean temperature.

$$\delta e = e_s - e_a \quad eqn. S1.3$$

 e_s is daily mean saturation vapour pressure (kPa), the average of saturation vapour pressures at daily maximum (T_{max} , °C) and minimum air temperatures (T_{min} , °C):

$$e_s = \frac{e_{s,Tmin} + e_{s,Tmax}}{2} \quad eqn. S1.4$$

$$e_{s,T} = 0.6108 exp\left(\frac{17.27T}{T+237.3}\right) eqn. S1.5$$

 e_a is actual vapour pressure (kPa), calculated based on daily maximum (RH_{max} , %) and minimum (RH_{min} , %) relative humidities:

$$e_{a} = \frac{e_{s,Tmin}\left(\frac{RH_{max}}{100}\right) + e_{s,Tmax}\left(\frac{RH_{min}}{100}\right)}{2} \quad eqn.S1.6$$

 ϵ is the slope of vapour pressure curve (kPa °C⁻¹):

$$\varepsilon = \frac{4098 \left(0.6108 exp \left(\frac{17.27T_{air}}{T_{air} + 237.3} \right) \right)}{(T_{air} + 237.3)^2} \quad eqn. S1.7$$

 γ is the psychrometric constant (kPa °C⁻¹):

$$\gamma = 0.665 \times 10^{-3} P$$
 eqn. S1.8

P is air pressure (kPa):

$$P = 101.3 \left(\frac{293 - 0.0065z}{293}\right)^{5.26} \quad eqn. S1.9$$

z = site elevation (630 m)

 R_{net} is net radiation (MJ m⁻² d⁻¹), calculated as the difference between net solar radiation (R_{ns} , MJ m⁻² d⁻¹) and net longwave radiation (R_{nl} , MJ m⁻² d⁻¹):

$$R_n = R_{ns} - R_{nl} \quad eqn.\,S1.10$$

$$R_{ns} = (1 - \alpha)R_s \quad eqn. S1.11$$

 α is the albedo of the crop, 0.23 for the reference crop

 R_s is the solar radiation (MJ m⁻² d⁻¹), approximated as shortwave irradiance, calculated from integrated daily PPFD (µmol m⁻² d⁻¹) on the basis of information presented in Jones (1992; Table 2.2):

$$R_s = \frac{PPFD}{457 \times 200 \times 10^6} \quad eqn. S1.12$$

$$R_{nl} = \sigma \left(\frac{T_{min,K}^{4} + T_{max,K}^{4}}{2}\right) \left(0.34 - 0.14\sqrt{e_{a}}\right) \left(1.35\frac{R_{s}}{R_{so}} - 0.35\right) \quad eqn. S1.13$$

 σ is the Stefan-Boltzmann constant: 4.903 $10^{-9}~\text{MJ}~\text{K}^{-4}~\text{m}^{-2}~\text{d}^{-1}$

 $T_{min,K}$ and $T_{max,K}$ are the daily minimum and maximum temperatures (K), respectively:

$$T_K = T_{\circ C} + 273.16 \quad eqn. S1.14$$

 R_{so} is the clear sky radiation (MJ m⁻² d⁻¹):

$$R_{so} = (a_s + b_s)R_a \quad eqn. S1.15$$

 a_s and b_s are Angstrom constants: 0.25 and 0.5 respectively

 R_a is the extraterrestrial radiation (MJ m⁻² d⁻¹):

$$R_a = \frac{24(60)}{\pi} G_{sc} d_r \left(\omega_s \sin(\varphi) \sin(\delta) + \cos(\varphi) \cos(\delta) \sin(\omega_s) \right) \quad eqn. S1.16$$

 π is 3.141593

 G_{sc} is the solar constant: 0.082 MJ m⁻² min⁻¹

 d_r is the inverse relative distance Earth-Sun:

$$d_r = 1 + 0.033 cos\left(\frac{2\pi}{365}J\right) \quad eqn. S1.17$$

J is the Julian day

 ω_s is the sunset hour angle (rad):

$$\omega_{s} = \arccos\left(-\tan\left(\varphi\right)\tan\left(\delta\right)\right)$$

 φ is the latitude of the experimental site in this study: -0.5784021 rad

 δ is solar declination (rad):

$$\delta = 0.409 sin\left(\frac{2\pi}{365}J - 1.39\right) eqn. S1.18$$

References

 Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. Rome, FAO - Food and Agriculture Organization of the United Nations.

Jones HG (1992) *Plants and microclimate: a quantitative approach to environmental plant physiology.* Cambridge, United Kingdom, Cambridge University Press.