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I. RELAXATION TIME OF THE BIOFILMS

Before pinpointing the rheological parameters that are needed to characterize the biofilms,

it is essential to understand the rheological response of the biofilms to external mechanical

stresses. Through a volume of studies [1–4], it has been well established that the biofilms

behave as viscoelastic liquids i.e., they exhibit an elastic solid-like behaviour at time t such

that t ≪ τve and a liquid-like behaviour at time t such that t ≫ τve. Here τve is the vis-

coelastic relaxation time (or often called as the elastic relaxation time [2]) that characterizes

the biofilm rheology. We shall provide more discussions on the significance of τve later. This

elastic solid-like behaviour (at t ≪ τve) is characterized by the shear modulus G, whereas

this liquid-like behavior (at t ≫ τve) is characterized by the liquid viscosity µb. The vis-

coelastic time scale τve is the ratio of these two parameters, i.e., τve = µb/G. In short, these

three parameters, namely G, µb and τve dictate the rheology of the viscoelastic biofilms.

The parallel plate rheometer creep test has been the technique that has been commonly

used to measure the rheological properties of any material. In this technique the concerned

material is placed between the parallel rheometer plates. A constant torque is applied for

a given time interval (t ∈ [0, T ]), and the resulting displacement of the rheometer plate is

obtained and is subsequently translated into the corresponding material strain. As long as

the applied torque is sufficiently small, the material exhibits linear response, and one can

witness any of the following three behaviours. First, if the material is an ideal elastic solid,

it responds instantaneously to the applied stress (exerted at t = 0) by an instantaneous

strain. This strain remains constant till the time when the stress is removed at t = T , and

at that point of time the material recoils to its original configuration. The central material

parameter for this case is the shear modulus G, which is obtained from the strain amplitude

between t = 0 and t = T . Second, if the material is an ideal viscous liquid, the material

exhibits a linear strain in the time period (t ∈ [0, T ]) in which the stress is applied. Once

the stress is removed (at t = T ), there is no further displacement, and the material does not

recoil to its original conformation. The central material parameter for this case is the liquid

viscosity µb, which is obtained from the slope of the strain curve. Third, if the material is an

idealized viscoelastic liquid it exhibits a behaviour which is a combination of the behaviours

of the elastic solid and the viscous liquid. The applied torque results in an instantaneous

elastic solid-like deformation (with the corresponding shear modulus G); however, over time,
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the material will creep irreversibly like a viscous liquid (with a viscosity µb). Once the torque

is withdrawn at t = T , there is only a partial recoil. The viscoelastic or elastic relaxation

time τve is the time needed for the irreversible deformation to completely account for the

initial reversible deformation [2]. In other words, τve can be estimated as the time needed for

the viscous creep length to become equal to the elastic deformation length, which ensures

that the memory of the initial condition is lost, and accordingly, we get τve = µb/G.

Central to our present analysis is the knowledge about the rheological parameters (G,

µb and τve) of the biofilms that degenerate into streamers in presence of low Reynolds

number transport. There have been massive volume of investigations that have studied

these rheological parameters of biofilms – most of these studies have employed the parallel

plate rheometer creep tests to obtain these rheological parameters. The most relevant of

these studies, in context to our present work, is the work by Shaw et al. [2], where the

authors demonstrate that the viscoelastic relaxation times (Shaw et al. [2] call it elastic

relaxation time) of a wide range of biofilm samples (obtained from different sources) remain

approximately the same at about 18 minutes. Shaw et al. [2] argued that there is a unique

survival significance of this convergent viscoelastic behavior of the biofilms, characterized

by this unique viscoelastic or elastic relaxation time of 18 minutes – this time signifies the

shortest period over which the biofilms can exhibit a phenotypic response to the applied

mechanical stress. This remarkable study by Shaw et al. [2] was based on the experimental

results of G and µb values of as many as 44 different biofilms. Shaw et al. [2] themselves

conducted experiments on different biofilms such as those produced by Streptococcus mutans,

different strains of Pseudomonas aeruginosa, a cyanobacterial biofilm and an algal biofilm.

In addition, they included data from previous experiments on biofilms [5] grown from pond

water inoculum. Shaw et al. [2] reported a massive variation in G and µb values with the

variation in the biofilms (extent of this variation was as large as seven orders of magnitude);

but most remarkably the ratio µb/G, which is the elastic or the viscoelastic relaxation time,

was invariably close to the value of 18 minutes. It is worthwhile to mention here that Shaw

et al. [2] demonstrated that the possible heterogeneities intrinsic to a natural biofilm will

affect µb and G almost equally, and accordingly the ratio µb/G remains unaffected. There

has been a host of studies [4, 6–11] that have based their analysis on this universal value

of the biofilm relaxation time, without conducting separate experiments on determining the

corresponding biofilm rheology. At the same time, there have been separate experiments
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on determining the relaxation times of different biofilms [12–14]. In Table I, we summarize

some of these values and the corresponding references – it becomes obvious that in most

of the cases the relaxation time is of very similar order as the magical value of 18 minutes

found by Shaw et al. [2].

TABLE I. Values of viscoelastic or elastic relaxation time τve for different biofilms obtained in

studies other than that of Shaw et al. [2]. The cases, for which there are multiple values of τve for

a given bacteria in a given study, are those where different strains of the same bacteria have been

used.

Bacteria forming Biofilms Viscoelastic or elastic Reference

relaxation time τve (minutes)

Staphylococcus aureus 17.5, 18.2 Di Stefano et al. [12]

Staphylococcus epidermis 19.2 Di Stefano et al. [12]

Staphylococcus aureus 12 Rupp et. al. [13]

Staphylococcus epidermis 21.9, 21.6, 25.5 Iannitelli et al. [14]

The key hypothesis of our analysis is that the streamers, in low Reynolds number (Re ≪

1) background transport, form as viscous liquid jets from the biofilms. The basis of our

hypothesis is that the time scale of formation of streamers ts (ts obtained from different

experiments is in the order of several hours, see Table I in the main paper) is much larger

than the viscoelastic or elastic relaxation time (τve) of the biofilms [given the universal value

of τve of 18 minutes [2], or a value close to it (see Table I)] – consequently, the biofilms,

being viscoelastic liquids, must behave as viscous liquids during the time of formation of

streamers. Let us now discuss the specific cases of the biofilms, corresponding to which

streamers have been observed in the experiments. The most widely studied biofilm cor-

responding to which streamer formation has been reported is the biofilm of the bacteria

Pseudomonas aerugionsa [9, 15]. Shaw et al. [2] carried out experiments for the rheology

of the biofilm formed from two different strains of Pseudomonas aerugionsa and for both

of them found τve ≈ 18 minutes. In the streamer formation (from the biofilm of the bac-

teria Pseudomonas aerugionsa) experiment of Rusconi et al. [9], the streamer formation

timescale was ts ≈ 5− 10 hours, whereas in the experiment of Drescher et al. [15] (here too

the streamers are formed from the biofilm of the bacteria Pseudomonas aerugionsa), we get
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ts ≈ 10−20 hours. Hence for the case of streamers formed from the biofilm of Pseudomonas

aerugionsa, we clearly find ts ≫ τve. The second kind of biofilms that have been reported

to disintegrate as streamers are the biofilms formed from Pseudomonas fluorescence [16].

Since we do not know of studies that conduct experiments to obtain the relaxation times for

the biofilms obtained from this variety of bacteria, we use the idea of commonality in the

viscoelastic relaxation time of the biofilms [2] and consider that the biofilms of Pseudomonas

fluorescence will also exhibit similar viscoelastic relaxation time (τve ≈ 18 minutes). In the

experiments of Valiei et al. [16], the streamer formation (from the biofilm of the bacteria

Pseudomonas fluorescence) timescale ts ≈ 9 hours, i.e., for this case too, we have ts ≫ τve.

The third kind of biofilms from which streamer formation has been reported are the biofilms

of the bacteria Staphylococcus epidermis [17]. Separate studies on the rheology of these

biofilms [12, 13] have reported a viscoelastic relaxation time ranging from 19.2 minutes to

25.5 minutes [12, 14], i.e., values that are substantially close to the value of 18 minutes.

In their streamer formation experiments (from biofilm of Staphylococcus epidermis), Weaver

et al. [17] observed a streamer formation timescale ts ≈ 6 hours, i.e., here also we have

ts ≫ τve. Therefore, for virtually all the experiments on streamer formation in low Reynolds

transport we invariably find ts ≫ τve, establishing our hypothesis of considering the stream-

ers (which are viscoelastic liquids) to be forming as viscous liquids. In the main paper,

we have summarized in a Table (see Table I in the main paper) these values of τve and ts

for the biofilms and the corresponding streamers, demonstrating the origin of our hypothe-

sis. Before closing the discussion on this issue, it is worthwhile to mention here that there

have been a number of studies that have modelled biofilms as viscous liquids [4, 7, 10, 18]

(please note that these studies never consider or discuss streamer formation) for timescales

exceeding τve, i.e., use a hypothesis similar to that of ours.

II. SCALING OF SHEAR STRESSES AND ELASTIC STRAINS IN THE

BIOFILM

The elastic strains on biofilms in presence of the flow-induced shear can be expressed as:

e ∼
µfuc

ℓ0G
, (1)
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where the flow-imposed shear stress scales as σ ∼ µfuc/ℓ0 (µf is the viscosity of the sur-

rounding liquid, uc is the characteristic flow velocity of the surrounding liquid and ℓ0 is the

characteristic length scale, which is typically the length scale of the flow geometry) and G

is the shear modulus of the biofilm. In Table II, we discuss the possible σ and e values

obtained in the streamer-formation experiments of Rusconi et al. [9, 19], Valiei et al. [16],

Weaver et al [17] and Drescher et al. [15].

TABLE II. Variation of the shear stress (σ) and the strain e for different experiments on streamer

formation. For all the cases we consider µf ∼ 10−3 Pa− s. Here Q is the applied flow rate.

Experiment Bacteria forming G (Pa) Q (µL/min) uc (mm/s) ℓ0 (µm) σ (Pa) e

Biofilms

Rusconi et al. Pseudomonas 10 [2] ∼ 1 ∼ 1 100 10−2 10−3

[9, 19] aeruginosa

Valiei et al. Pseudomonas 10 [2] ∼ 0.2 ∼ 0.1 100 10−3 10−4

[16] fluorescens

Weaver et al. Staphylococcus 103 [12] 0.1 − 1 10−4−

[17] epidermis 10−3

Drescher et al. Pseudomonas 10 [2] ∼ 1− 10 ∼ 1− 10 100 10−2 − 10−1 10−3−

[15] aeruginosa 10−2

III. STABILITY CRITERION FOR STREAMERS AS LIQUID JETS IN

COAXIAL FLOW

We consider the stability of the streamer “viscous liquid” jet, represented by a thin

cylindrical jet of radius Rs and viscosity µb, in a background coaxial flow inside a capillary

of radius ξ containing a liquid of viscosity µf (see Fig. 1). The stability analysis is exactly

similar to that of Guillot et al.[21, 22] – therefore, we simply state the key results, without

invoking detailed derivation that can be easily found in Guillot et al. [22].

The base state for the problem can be obtained by considering a steady, fully-developed

pressure-driven flow (both inside and outside the jet) in the axial direction. The solution
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FIG. 1. Schematic of the streamer viscous jet (shown in red) in coaxial background flow. As

established below, the streamer will be “absolutely” unstable breaking down into drops beyond the

jet length ℓbs (breakup length).

for the base state is obtained by solving the following differential equation:

−
dp

dz
+ µb

[

1

r

d

dr

(

r
du

dr

)]

= 0, 0 ≤ r ≤ Rs

−
dp

dz
+ µf

[

1

r

d

dr

(

r
du

dr

)]

= 0, Rs ≤ r ≤ ξ, (2)

in presence of the boundary conditions:

(u)r=ξ = 0,

(

µf
du

dr

)

r=R+
s

=

(

µb
du

dr

)

r=R−

s

, (u)r=R+
s
= (u)r=R−

s
, (u)r=0 = finite. (3)

to yield:

u = −
1

4µb

dp

dz

[

(

R2
s − r2

)

−
µb

µf

(

ξ2 − R2
s

)

]

(0 ≤ r ≤ Rs)

u = −
1

4µf

dp

dz

(

ξ2 − r2
)

(Rs ≤ r ≤ ξ). (4)

With this base state, one can perform a perturbation analysis to obtain the following criterion

for the stability of the jet (for detail derivation, please refer to Guillot et al. [22]):

Ka =
C1F

(

Rs

ξ
, µb

µf

)

(

Rs

ξ

)3

E
(

Rs

ξ
, µb

µf

)

, (5)

where C1 =
5+

√
7

18

√

24√
7−1

, Ka is capillary number at the scale of the capillary, expressed as

Ka = (−∂p/∂z)ξ2/γ = µfuc/γ and E and F are functions expressed as:

E

(

Rs

ξ
,
µb

µf

)

=−4

(

Rs

ξ

)

+

(

8−
4µf

µb

)(

Rs

ξ

)3

+ 4

(

µf

µb
− 1

)(

Rs

ξ

)5

, (6)
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F

(

Rs

ξ
,
µb

µf

)

=

[

4−
µf

µb
+ 4 ln

(

Rs

ξ

)](

Rs

ξ

)4

+

(

−8 +
4µf

µb

)(

Rs

ξ

)6

+

[

4−
3µf

µb
− 4

(

1−
µf

µb

)

ln

(

Rs

ξ

)]

This stability criterion [eq.(5)] is plotted in Fig. 2 in the main paper. In the same figure, we

plot the experimental conditions (employed in streamer formation experiments), represented

by the corresponding Ka and Rs/ξ values (Table II in the main paper summarizes the Ka

values witnessed in the different experiments). Now the experiments are typically performed

in square [9, 15] or rectangular [16] geometries. Important to note that in these geometries

(with characteristic dimension h), Ka = −(∂p/∂z)(h/2)2/γ = µfuc/γ (i.e., the definition of

Ka remains same as that in a circular capillary; here γ is the surface tension between the

streamer liquid and the bulk liquid) and Rs/ξ is replaced by Rs/(h/2) (i.e., it still remains

the ratio of the jet radius to the characteristic dimension of the flow geometry). What

changes, however, is the equation for the stability criterion [eq.(5)]. But, as has been clearly

demonstrated in Guillot et al. [22], such a change is only important for substantially large

(> 0.3) values of Rs/ξ or Rs/(h/2). However, we always find that Rs ≪ ξ or Rs ≪ h/2.

Therefore, we can safely assume that the stability plots remain unchanged with the change in

geometry. Hence it is perfectly valid to plot the experimental conditions, represented by Ka

and Rs/ξ values, for streamer formation experiments in square or rectangular geometries,

in the instability plot for the circular capillaries.

IV. ESTIMATION OF THE BREAKUP LENGTH OF THE STREAMER

VISCOUS JET IN COAXIAL FLOW

Considering the background flow to be coaxial with the streamer viscous jet, we can

pinpoint that the streamer jet experiences an “absolute instability” (see previous section)

triggering a spontaneous breakdown of the jet into drops. Like any jet breakup, here too,

we can quantify the breakup by the corresponding “breakup length” ℓbs. This length is

specially significant for the set of microscale experiments (with system length scale ℓ0)

[9, 15, 16] that report the formation of streamers. In case ℓbs > ℓ0, the streamers continue

as unbroken viscous jets attached to point from where they originated (e.g., microposts in

the experiment of Valiei et al. [16]). In this section, we shall provide a scaling estimate of

ℓbs with the background flow being coaxial with the streamer viscous jet. Following Javadi
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FIG. 2. A continuous streamer formation between two successive cylindrical micro-posts. Fluid

flow is from top to bottom. Reproduced from Valiei et al. [16] by permission of The Royal Society

of Chemistry.

et al. [23], which estimates the breakup length for the falling viscous jets, we start with

the equations governing the one dimensional [plug flow, represented by the uniform velocity

v(z, t)] of high viscous slender liquid jets:

∂A

∂t
+

∂

∂z
(Av) = 0, (8)

ρA

(

∂v

∂t
+ v

∂v

∂z

)

= 3µb
∂

∂z

(

A
∂v

∂z

)

− γA
∂κ

∂z
+ f0, (9)

κ =
1

Rs

√

1 +
(

dRs

dz

)2
−

d2Rs

dz2
[

1 +
(

dRs

dz

)2
]3/2

, (10)

where ρ is the density of the viscous jet, Rs(z, t) is the radius of the jet, A = πR2
s, κ is the

mean curvature and f0 is the externally imposed force (per unit length) on the fluid. For a

falling jet this external force is due to gravity, so that f0 = ρgA (g is the acceleration due to

gravity), whereas for our case it is the external shear imposed by the background flow, i.e.,

f0 ∼ 2πRsµfuc/ℓ0. We now invoke an analysis similar to Javadi et al. [23]. For a steady

state of the jet, if we neglect the surface tension (γ = 0), the momentum balance will read:

ρAv
∂v

∂z
= 3µb

∂

∂z

(

A
∂v

∂z

)

+ f0 (11)

For smaller jet length (z ∼ ℓj , ℓj is the jet length), viscous forces are more dominant than the

inertial forces, and therefore f0 is balanced by viscous forces for ℓj < ℓc and f0 is balanced
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by the inertial forces for ℓj > ℓc (here ℓc denotes the critical jet length where the viscous

and the inertial forces balance each other). This is exactly equivalent to the case studied by

Javadi et al. [23], where the weight of the jet (equivalent to f0) is balanced by the viscous

forces for smaller jet lengths and inertial forces for larger jet lengths. This transition length

(ℓc) can thus be quantified by equating the viscous forces with the inertial forces, which

yield:

ℓc ∼
µb

ρuc

. (12)

For the experiments studying the streamer formation, u∞ ∼ 10−4 − 10−2 m/s [9, 15, 16],

µb ∼ 104 Pa− s [15, 16] and ρ ∼ 103 kg/m3 [24, 25], we get ℓc ∼ 104 − 106 m, i.e., ℓc ≫ ℓ0.

Hence the streamer jet is always driven by the balance of the viscous force and the applied

force f0. Consequently, we can write the velocity of the jet at a given z as [using eq.(11) to

obtain the change in velocity ∆u]:

u ∼ uc +∆u ∼ uc

(

1 +
2µf

µb

z2

rℓ0

)

. (13)

Using z ∼ ℓ0, µf/µb ∼ 10−7 and ℓ0/r ∼ 102, we get:

u ∼ uc, (14)

i.e., the extremely large viscosity of the streamer ensures that its average velocity remains

close to the bulk value.

One needs to account for the surface tension effects when one needs to pinpoint the stability

of the jet – the surface tension tries to breakdown the jet and the viscosity resists this

effect. Consequently, following Javadi et al. [23] and Eggers and Dupont [26], we get the

perturbation growth rate (for the high viscosity limit) Γp as:

Γp ∼
γ

µbRs
. (15)

On the other hand, the characteristic time scale for the streamer jet can be quantified as

z0/uc (where z0 is the characteristic length scale for the jet). Following Javadi et al. [23],

we quantify that the breakup occurs at the distance z0 ≡ ℓbs where the Rayleigh growth

time (quantified as Γ−1
p ) becomes smaller than the characteristic time for the jet motion

(z0/uc = ℓbs/uc), and hence:
ℓbs
Rs

∼
µbuc

γ
. (16)
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Please note that like the case of inviscid flow, here too the breakup gets delayed if the velocity

is large (off course for the inviscid case where inertia resists the surface tension mediated

breakup, ℓbs demonstrates a different scaling with u). Using eq.(16) we can estimate the

breakup length for the streamer viscous jets for different experiments. For example, for

Valiei et al. [16], we get ℓbs ∼ 100 µm (using Rs ∼ 1 µm, µb ∼ 104 Pa− s, γ ∼ 0.01 N/m

and uc ∼ 10−4 m/s), whereas for Drescher et al. [15], we get ℓbs ∼ 1 − 10 mm (using

uc ∼ 10−3 − 10−2 m/s and all other parameters identical as above). In Valiei et al. [16], we

indeed find that the streamers continue as long unbroken jets/filaments (see Fig. 2).

V. ESTIMATION OF THE BREAKUP LENGTH OF THE STREAMER

VISCOUS JET IN CROSSFLOW

FIG. 3. Schematic illustrating the manner in which the streamers are partly in crossflow in the

experiments of Rusconi et al. [9] and Drescher et al. [15]. The momentum of this crossflow

(necessary to breakup the streamer liquid jet) is least at the point x1 (at the wall) and maximum

at the point x2 (at the channel center).

Here we shall provide an analysis to calculate the breakup length for the streamer jet

in case it is entirely in a crossflow (see Fig. 3 for the schematic explanation). A jet in

a crossflow is characterized by different vortical features as has been extensively described
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FIG. 4. (Color Online) Variation of f(ℓbs/ξ)
(1/k)(Rs/ξ)

[where f(ℓbs/ξ) =
ℓbs
ξ −

2
3

(

ℓbs
ξ

)3
+ 1

5

(

ℓbs
ξ

)5
] with

ℓbs/ξ for different values of k. This plot provides solution to eq.(18) – the solution yields (ℓbs/ξ)c

and ensures that f(ℓbs/ξ)
(1/k)(Rs/ξ)

= 1 (denoted with a dotted line).

in several literature [27]. The most relevant characterization of the jet in a crossflow is to

quantify the trajectory (x, y) of the jet as a function of the ratio of the momentum of jet

to that of the crossflow [28]. We quantify the breakup length of a jet in a crossflow as the

distance from the point of origin of the jet, corresponding to which the inertial momentum

of the crossflow gets balanced by the momentum of the jet. This distance is also the distance

over which the jet gets deflected from its path. This idea can be understood in the present

context as well. The momentum of the cross flow is very small close to the wall, so that

the jet continues unbroken at such locations; however towards the centre of the crossflow,

where its momentum increases, the momentum of the jet and the crossflow balances each

other and there can be deflection and breakup of the jet (see Fig. 3). Following Muppidi

and Mahesh [28], we can obtain this breakup length (or the deflection distance ℓbs) as:

ρcfπ2Rs

∫ ℓbs

0

u2
cfdr = ρj

∫

A

u2
jdA (17)

where ucf , ρcf and uj, ρj are the velocities and densities of the background flow and the

jet, respectively. Using ucf = 2uav (1− r2/ξ2) = umax (1− r2/ξ2) (here uav and umax are the

average and the maximum velocities), ρcf ≈ ρj [24, 25] and A = πR2
s, we get:

ℓbs
ξ

−
2

3

(

ℓbs
ξ

)3

+
1

5

(

ℓbs
ξ

)5

=
1

k

Rs

ξ
, (18)

where k = 8 for uj = uav and k = 2 for uj = umax. In Fig. 4, we plot the variation of

f(ℓbs/ξ)
(1/k)(Rs/ξ)

[where f(ℓbs/ξ) =
ℓbs
ξ
−

2
3

(

ℓbs
ξ

)3

+ 1
5

(

ℓbs
ξ

)5

] with ℓbs/ξ and from there we get the
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solution of eq.(18), i.e., the real values of ℓbs/ξ [we call them (ℓbs/ξ)c] that satisfy eq.(18).

From the solutions, we can see that deflection heights (or breakup lengths) for the streamer

jet in crossflow is extremely small: e.g., (ℓbs/Rs)k=2 = 0.5 and (ℓbs/Rs)k=8 = 0.13. This

implies that if the jet is in crossflow the breakup will start to occur almost instantaneously

after the jet starts. Therefore even when there is slight component of crossflow in the dy-

namics of a given streamer jet – e.g., in the experiments of Rusconi et al. [9] and Drescher

et al. [15] the streamer is not aligned along the flow direction and therefore will experi-

ence some contribution of the crossflow – the streamer will start to breakdown into drops

spontaneously and the corresponding breakup length will be substantially smaller than that

predicted in eq.(16).

Please note for streamers, either in coaxial flow or crossflow, there may be a possible

variation in the jet breakup length due to the addition of mass (such mass addition alters

the instability dynamics [29, 30]). However, for co-axial flow [16], the rate of mass addition

dRs/dt = βCAacD/4 ∼ 10−11 m/s, (see section VI for the meaning of the different symbols)

i.e., it is much smaller than the average velocity of the streamers (∼ uc ∼ 10−4 m/s) and

hence we neglect the effect of mass addition in variation of the breakup length ℓbs for the

coaxial flow [16]. However, the rate of mass addition in crossflow [9, 15], will be substantially

higher and would cause an even further reduction in the breakup length [29, 30]. We refrain

from that analysis, since that would only establish our present hypothesis without providing

any new insight.

VI. TIME VARIATION OF GROWTH OF BIOFILM STREAMERS

Drescher et al. [15] provided a detailed derivation of the growth rate of the radius of the

biofilm streamers. They explained that such growth occurs due to the adsorption of advected

bacteria that adds mass to the biofilm streamers. Representing the biofilm streamers as a

“solid” object of a given radius Rs, with its axis oriented transverse to the flow direction,

the authors established that for the non-porous “solid” streamers, Rs(t) ∼ t3/4, whereas

for a completely transparent (extreme case of a porous) streamer, Rs(t) ∼ exp (t/τtheory),

where τtheory is the time scale for the growth of the streamers. Experiments suggested a

very rapid growth rate of the streamers, which could only be explained by such exponential

dependence of Rs on time. It was further shown that τtheory ∼ 1/(Cuc), where C is the
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cell concentration in the bulk and uc is the characteristic velocity (which is the average flow

speed in the microchannel). From experiments, they recovered 1/uc and 1/C0.6 variations

of τtheory, i.e., there was a quantitative match of velocity dependence and a pretty agreeable

qualitative match of concentration dependence. Here we shall first show that there is an

error in Drescher et al.’s derivation of the Rs(t) ∼ exp (t/τtheory); on being corrected such

exponential dependence no longer exists. The starting point of the equation that leads to

Rs(t) ∼ exp (t/τtheory) is that the streamer cross sectional area (πR2
s) increases when a cell

is caught by the streamer that adds an area Aac to the streamer cross section. Therefore,

2πRs
dRs

dt
= βIAac, (19)

where I is the number of cells per unit length of the streamer per unit time and β is the

fraction of cells that get caught in the streamer. Drescher et al. [15] expressed I = 2RsJ =

2RsCV (where J is the flux of the cells and V is the velocity of cell migration through the

streamer), so that eq.(19) reduces to:

π
dRs

dt
= βCV Aac, (20)

We now discuss the fundamental errors in eq.(20). First and foremost the units on the two

sides of eq.(20) do not match. The unit on LHS is m/s, whereas that in RHS (considering

the units of C, V and Aac as 1/m3 [15], m/s and m2, respectively) is 1/s. Just to ensure

that there is a match in the dimensions, Drescher et al. [15] used a unit of µm3 (i.e., unit of

volume) for Aac. The second and more non-intuitive issue concerns the balance law expressed

in eq.(19). The cells get added to the streamer and contribute to an increase in the streamer

surface area, with the streamer being in cross flow. Therefore, the area that changes is not

the cross sectional area, rather it is surface area of the cylindrical streamer, expressed as

As = 2πRsℓs (where ℓs is the length of the streamers). Also this rate change of area must

be equal to the area change caused by total number of cells per unit time that get adsorbed

(and contributes to an area change) of the streamers. Therefore, we can write:

d

dt
(As) = β(F lux× As)Aac ⇒

dRs

dt
= βCV RsAac. (21)

One can clearly see that RHS and LHS of eq.(21) have same units (m/s). Using V ≈

Rs∆p/7µf (where ∆p is the pressure drop along the streamer; see Drescher et al. [15] for

the derivation of this expression of V ), we can re-write eq.(21) as:

dRs

dt
=

βC∆pAac

7µf
R2

s. (22)
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Integrating eq.(22) in presence of the condition Rs(t = 0) = Rs,0, we shall get:

Rs

Rs,0
=

1

1− t/τtheory,1
, (23)

where

τtheory,1 =
7µf

βC∆pAacRs,0
(24)

is the time scale for streamer formation. Also from eq.(23), we can state that on considering

a “solid” streamer, we shall never get an exponential increase in the streamer thickness (as

has been observed in experiments [15]). Please note, however, that using uc ∝ ∆p/µf , we

do get τtheory,1 ∝ 1/(Cuc) from eq.(24).

We now consider the increase in the area of the “viscous liquid” streamers, as considered

in the present case. We have discussed previously that on account of geometry-induced

crossflow, the streamer liquid jet may break down into smaller droplets [9, 15] of radius

approximately equal to Rs. Therefore, we are now considering the area enhancement (on

account of advective influx of bacteria) of spherical liquid drops (of area 4πR2
s). Therefore,

following the same principle of area increase as the case of Drescher et al. [15], we may

write:
d

dt
(4πR2

s) = 4πβCV R2
sAac, (25)

so that using V ≈ uc (this approximation stems from the fact that being a “liquid” drop,

the streamer does not induce a major variation in the magnitude of cross flow velocity; such

variation is typically triggered by a solid object on account of “no slip” and “no penetration”

boundary condition at its surface), we can write:

dRs

dt
=

βCucAac

2
Rs, (26)

which on integration [with Rs(t = 0) = Rs,0] yields:

Rs

Rs,0
= exp (t/τtheory,2), (27)

where

τtheroy,2 =
2

βCucAac

. (28)

Please note that such exponential behaviour (having a time constant different from τtheory,2)

can also be predicted by assuming the streamers to be unbroken long cylindrical liquid jets

(with constant length) – problem with such an assumption is that it violates the stabil-

ity condition, which forbids the streamers to sustain as long unbroken jets in cross flows.
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Therefore, we conclude that only by considering a “viscous liquid” state of the streamers

that breakdown into droplets in presence of flow-geometry-induced crossflow, we can explain

such exponential growth of streamer surface area.

It is worthwhile to discuss here the manner in which streamer growth rate may vary if one

considers a purely diffusion-mediated transport of the “area-enhancing” cells to the “viscous

liquid” streamer jets. This typically occurs if the streamer jet is unbroken and is coaxial

with the background flow, as in Valiei et al. [16]. In this case, V ≈ VD, where VD is the

diffusion velocity expressed as VD = dℓD/dt = D/(2ℓD) (where D is the diffusivity and ℓD

is the diffusion length scale for the cell migration into the streamers). With ℓD ≈ Rs and

using V ≈ VD in eq.(21), we shall get:

dRs

dt
=

βCAacD

2
, (29)

which on integration [with Rs(t = 0) = Rs,0] yields:

Rs

Rs,0

= 1 +
t

τtheory,3
(30)

where

τtheroy,3 =
2Rs,0

βCAacD
. (31)

We can also obtain a ratio of these different time scales, such as:

τtheory,1
τtheory,2

≈
7

2

L2
t

LaRs,0

, (32)

and
τtheory,3
τtheory,2

≈
Rs,0uc

D
. (33)

To obtain eq.(32), we used uc ≈ (1/µf)(∆p/La)L
2
t (where Lt is the transverse dimension

of the channel and La is the axial length over which the pressure drop occurs). From

the experiment of Drescher et al. [15] or Rusconi et al. [9, 19], we get Lt ≈ La, but

Rs,0 ≪ Lt, implying τtheory,1 ≫ τtheory,2. Also using D ≈ 10−10m2/s, Rs,0 ≈ 1 − 10 µm

and uc ∼ 10−3 m/s, we get from eq.(33), τtheory,3 ≫ τtheory,2. Therefore, we establish that

considering streamers as liquid jets that break down spontaneously into drops (on account

of flow-geometry-induced crossflow), we not only get an exponential increase in the streamer

thickness (which is not possible with “solid” state streamer), but also get a time scale that

is independent of initial streamer thickness and is substantially smaller (indicating much

faster clogging effect) than the time scale corresponding to the case of “solid” streamer or

the case of diffusive transport.
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VII. REDUCTION IN BULK FLOW RATE DUE TO PRESENCE AND

BREAKDOWN OF “LIQUID” STREAMER

FIG. 5. Schematic illustrating the manner in which the streamers disintegrated due to crossflow

may block the flow passage causing the catastrophic “clogging” effect[15]. The cylindrical streamer

jet will breakdown into spheres; however, we provide a simplistic estimate of flow reduction con-

sidering them to cylinders aligned with the flow direction.

In this section, we shall discuss two issues related to the role of streamers in causing

reduction in the flow rate – such reduction signifies the role of the streamers in “clogging”

the flow. First, we shall show that streamers as cylindrical “viscous liquid” jets, placed in

the middle of the flow passage can lead to a substantial reduction in the flow rate. This

reduction, depending on the ratio of the streamer thickness to the channel dimension, may

be more significant than the reduction caused by the “solid” state streamer placed in the

middle of the flow passage [15]. Second, we demonstrate that the breakdown of the “viscous

liquid” streamer jet into droplets (on account of presence of geometry-mediated crossflow)

may substantially augment this reduction (see Fig. 5 for the schematic).

We start by considering the flow rate for a steady pressure-driven fully developed flow

inside a cylindrical capillary of radius ξ, which can be expressed as:

Q0 = −
π

8µf

dp

dz
ξ4, (34)

where −dp/dz is the applied pressure gradient. Following Drescher et al. [15], for a wall

attached biofilm of thickness ǫξ (ǫ ≪ 1), which leads to a reduced radius of ξ − ǫξ, we get

the flow rate as Qfilm as:

Qfilm = −
π

8µf

dp

dz
(ξ − ǫξ)4 , (35)
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FIG. 6. (Color Online) Variation of the dimensionless flow rate with ǫ (dimensionless thickness of

the wall-attached biofilm) for four different cases, namely with wall-attached biofilm (Qfilm/Q0),

with “solid” streamer placed along the center of the cylindrical capillary (Qst,s/Q0), with “liquid”

streamer placed along the center of the cylindrical capillary (Qst,l/Q0), with three liquid streamers

placed symmetrically along the capillary cross section (Qst,3l/Q0).

so that
Qfilm

Q0
= (1− ǫ)4 , (36)

indicating a reduction in the flow rate. Drescher et al. [15] argued that if a long cylindrical

“solid” streamer, having the same mass as the wall-attached biofilm, is placed inside the

middle of the capillary, it will lead to a substantially larger reduction in the flow rate.

Considering the radius of this “solid” cylindrical streamer to be Rs, and assuming that this

streamer is placed along the centerline of the channel, providing a no-slip surface, Drescher

et al. [15] showed that the corresponding flow rate Qst,s is:

Qst,s

Q0
=

(

Rs

ξ

)4 [

1− ln
(

Rs

ξ

)]

+ 1 + ln
(

Rs

ξ

)

− 2
(

Rs

ξ

)2

ln
(

Rs

ξ

) . (37)

In case the streamers are “viscous liquid” jets placed in the middle of the capillary, we

get the velocity field u inside (0 ≤ r ≤ Rs) and outside (Rs ≤ r ≤ ξ) the streamers as

expressed in eq.(4). Hence the new flow rate in the bulk Qst,l (excluding the streamers) can

be expressed as:

Qst,l

Q0
=

∫ ξ

Rs
2πrudr

Q0
=

(

1−
Rs

ξ

)4

, (38)
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From the volume conservation, we can relate ǫ and Rs as:

Rs

ξ
=

(

2ǫ+ ǫ2
)1/2

, (39)

so that we can express eqs.(37,38) solely in terms of ǫ. Variation in the flow rates for different

conditions is depicted in Fig. 6. We can clearly see that depending on ǫ, we get a reduced

flow rate for “liquid” state streamer jets.

“Liquid” jet streamers will break down into smaller segments on account of presence of

geometry-mediated crossflow [9, 15] (see above). Also since crossflow is the primary breaking

mechanism for the streamers, this will mean that the broken smaller segments (of the stream-

ers) will be located transverse to the flow. A simple analogy can be 3 streamer segments (of

identical radius as the single streamer) placed symmetrically along the transverse direction,

i.e., at the following three locations: (−ξ/2 − Rs) ≤ r ≤ (−ξ/2 + Rs), −Rs ≤ r ≤ Rs and

(ξ/2−Rs) ≤ r ≤ (ξ/2 +Rs) (see Fig. 5). Please note that instead of considering drops, we

consider cylindrical segments of the broken streamer – this is not strictly correct, since the

streamer jet will breakdown into drops. However, change of such geometry of the broken

segments will only change the flow field (induce a transverse component of the flow field) at

a given cross-section, but this will not change the overall flow reduction, since that reduction

depends only on the axial flow, which will not be substantially affected. For such a case (see

Fig. 5) the governing equation would be:

−
dp

dz
+ µb

[

1

r

d

dr

(

r
du

dr

)]

= 0, 0 ≤ r ≤ Rs,

−
dp

dz
+ µf

[

1

r

d

dr

(

r
du

dr

)]

= 0, Rs ≤ r ≤ (ξ/2− Rs),

−
dp

dz
+ µb

[

1

r

d

dr

(

r
du

dr

)]

= 0, (ξ/2−Rs) ≤ r ≤ (ξ/2 +Rs),

−
dp

dz
+ µf

[

1

r

d

dr

(

r
du

dr

)]

= 0, (ξ/2 +Rs) ≤ r ≤ ξ. (40)

and the corresponding boundary conditions are

(u)r=ξ = 0,

(

µf
du

dr

)

r=(ξ/2+Rs)+
=

(

µb
du

dr

)

r=(ξ/2+Rs)−
, (u)r=(ξ/2+Rs)+

= (u)r=(ξ/2+Rs)−
,

(

µb
du

dr

)

r=(ξ/2−Rs)+
=

(

µf
du

dr

)

r=(ξ/2−Rs)−
, (u)r=(ξ/2−Rs)+

= (u)r=(ξ/2−Rs)−
,

(

µf
du

dr

)

r=R+
s

=

(

µb
du

dr

)

r=R−

s

, (u)r=R+
s
= (u)r=R−

s
, (u)r=0 = finite. (41)
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The solution for the flow fields are:

u = −
1

4µb

dp

dz

[

(

2ξRs +R2
s − r2

)

+
µb

µf

(

ξ2/2− R2
s

)

]

[0 ≤ r ≤ Rs],

u = −
1

4µf

dp

dz

[

(

ξ2/2− 2R2
s − r2

)

+ 2
µf

µb

ξRs

]

[Rs ≤ r ≤ (ξ/2−Rs)],

u = −
1

4µb

dp

dz

[

(

(ξ/2 +Rs)
2
− r2

)

+
µb

µf

(

ξ2 − (ξ/2 +Rs)
2
)

]

[(ξ/2− Rs) ≤ r ≤ (ξ/2 +Rs)],

u = −
1

4µf

dp

dz

(

ξ2 − r2
)

[(ξ/2 +Rs) ≤ r ≤ ξ]. (42)

The resulting flow rate in the bulk Qst,3l (excluding the streamers) can be expressed in

dimensionless form as:

Qst,3l

Q0
=

∫ ξ/2−Rs

Rs
2πrudr +

∫ Rs

ξ/2+Rs
2πrudr

Q0
=

1−

(

1

2
+

Rs

ξ

)2
[

2−

(

1

2
+

Rs

ξ

)2
]

+

[

1− 4

(

Rs

ξ

)2

+ 4
µf

µb

Rs

ξ

]

(

1

4
−

Rs

ξ

)

−

(

1

2
−

Rs

ξ

)4

+

(

Rs

ξ

)4

,

(43)

and we get the dimensionless flow rate Qst,3l/Q0 in terms of ǫ using eq.(39). The result is

plotted in Fig. 6, and we clearly find a substantially reduced flow rate, as compared to the

“solid” streamer, for the entire spectrum of ǫ.
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