
Supplementary Information 

SI Text 1: Derivation and assumptions of the effective temperature model 

We assume that the displacements of intracellular particles are due to passive thermal activity 

and active motor-induced activity and that the active and passive processes are independent.  In 

1D:  

 

                     1total thermal motorsx x x   

 

where x is the displacement and the subscripts indicate the driver of the displacement.  For a 

random process, we expect the displacements to be random fluctuations with a mean of 0: 

 

           0                     2total thermal motorsx x x    

 

where < > denotes ensemble average.  Assuming independent random processes for xthermal and 

xmotors, for the mean squared displacements we have: 
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Assuming the medium is a Newtonian fluid, we can solve for the mean squared displacements 

separately for thermal and non-thermal fluctuations using the Langevin equation: 

 

                        4mv bv F t    



where v is the velocity,  is the time derivative of the velocity, b is the damping factor which is 

assumed to be constant, m is the mass of the particle being tracked, and F(t) is the time 

dependent driving force, which is random and uncorrelated over time in this case.  The general 

solution for the mean squared displacement is [1,2]:   
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where γ ≡ b/m and KE is the average kinetic energy of the system.  For the case of both thermal 

and motor-induced activities: 
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where the subscripts 1 and 2 refer to properties associated with the thermal and motor-induced 

fluctuations, respectively.   

 

For the thermal case, b1 = 6πηa, where a is the radius of the fluctuating particle and η is the 

viscosity, and KE1 = kBT/2, which is in accordance to the equipartition theorem for 1D 

translational motion.  For the motor-driven fluctuations, we assume that motors have additional 

persistence such that the damping factor b2 is different and smaller than b1.  For a 3D isotropic 

medium the mean squared displacement is 3 times as large and the factor of 3 can be absorbed 

into the KE term, and we now refer to the mean squared displacement as <r
2
> = <x

2
> + <y

2
> + 

<z
2
>.  For t >> 1/γ1, thermal motion is diffusive: 
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where A ≡ γ1KE2/KE1.  In the Laplace frequency domain: 
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where s is the Laplace frequency and s0 ≡ γ2 is the characteristic frequency.  T(1+A/(s+s0)) is 

now interpreted as the effective temperature.  For t << 1/γ2: 

 

   2   1 .                     9
2

Bk T At
r t t

a

 
  

 
 

 

Also note here that the average kinetic energy of the system should be proportional to the 

average of the square of the stress fluctuations shown in Fig. 6 and SI Fig. 3.  The stress here is a 

measure of the tension on actin filaments in the network over a defined area.  The stress 

fluctuations are essentially due to actin filaments stretching and relaxing (thermally and via 

motor activity) from their steady-state stretched lengths.  If we assume that actin filaments are 

linear elastic, then <S
2
> ~ <k

2
L

2
>, where S is the stress fluctuation from mean stress, k is the 



spring constant of actin, and L is the deviation of the length of the filaments from their steady-

state lengths.  Note that due to motor activity, there is prestress in the network so the average 

stress is non-zero as shown in Fig. 6.  <L
2
> ~ v0

2
 tp

2
, where v0 is the instantaneous speed of the 

change in length due to the source (thermal or motors) and tp is the persistence time of the source 

(thermal or motors) in its direction of motion.  tp of thermal collisions should be much lower than 

that of motors, and v0
2
 is proportional to kinetic energy.  Therefore <S

2
> ~ k

2
 tp

2 
KE, so when 

comparing the stress fluctuations of the same material due to the same source, such as motors, 

increased <S
2
> indicates increased KE, and increased KEmotors leads to an increase in A in the 

effective temperature model.               
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SI Figure 1 
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SI Figure 1: Average (blue) and individual (yellow) 2D MSDs of nanoparticles stuck to the 

surface of a glass slide.  This is the baseline noise in our experimental setup. 



SI Figure 2 

 
 

SI Figure 2:  Mitochondria and ballistically injected nanobead-tracking microrheology of MDA-

MB-231 cells at ambient conditions.  Cells were embedded in 3D in collagen in the microfluidic 

device. a,b) Mitochondria-tracking 1D (a) MSDs and (b) β’s in the directions of maximum (blue) 

and minimum (green) fluctuations.  N = 166 mitochondria.   c,d) 500nm-diameter polystyrene 

nanobead-tracking 1D (c) MSDs and (d) β’s in the directions of maximum (blue) and minimum 

(green) fluctuations.  N = 30 beads.  Experiments here were performed at ambient conditions.  

Error bars are s.e.m.  The color code of the curves is the same as in Figure 2b.    



SI Figure 3 

 

SI Figure 3: Directions of alignment along maximum 1D MSDs for cell in Fig. 2.  There does not 

appear to be global anisotropy in the cell. 



SI Figure 4 

 
SI Figure 4: 3D confocal brightest point projections of GFP-actin expressed in MDA-MB-231 

cells a) on a 2D substrate and b) embedded in a 3D collagen matrix along the xy (center), xz 

(bottom), and yz planes (right).  The scale bar is 20μm and is equal along all 3 image planes.   

 



SI Figure 5 
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SI Figure 5: Stress fluctuation distribution from Brownian dynamics simulations.  The 

normalized distribution of stress fluctuations from mean stress for different conditions is shown.  

For 2D simulations, the distribution is wider in the x (and y) direction than in the z direction, 

which has the fixed boundaries.  Decreasing the height in 2D (z-dimension) appears to increase 

the width of the stress fluctuation distribution.  In 3D, the distribution has a decreased width, 

indicating decreased stress fluctuation activity in comparison to 2D.  Finally, when motors are 

not active and only thermal motion is present (red), the stress fluctuation magnitude is much 

lower.     

 

 

 

   


