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S0 Supplementary Figures

4. It can be shown that A∗k(t) is invariant with respect to a permutation of the metabolites A1 to
Ak−1: the dynamics of A∗k(t) depends only on the concentrations of A1 to Ak−1, but not their
ordering (Fig. 2). This has an important implication that for a bipartition q of a metabolite
pool Ai, the dynamics of all A∗j (t) (j > i) are symmetric in q with respect to q = 0.5 (hence
the symmetry in Fig. 7a).
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Figure 2: Several normalized trajectories illustrating the dynamics of A∗2(t). First, both the blue and
green curves represent A∗2(t) and are different in that the pool sizes of A1 and A2 are exchanged;
that the two curves overlap suggests the permutation invariance discussed in Remark 4. Second,
the red curve represents the dynamics of a single metabolite of the pool size the larger one of A1

and A2, and that it approaches the green curve quickly at late times suggests the domination of
the slower exponential in a mixture at late times. Third, the cyan curve represents the second-
order approximation to A∗2(t) at t = 0. Finally, the magenta curve represents the dynamics of a
single metabolite of pool size the sum of A1 and A2, and in Section ?? it suggests that it to a good
approximation shares with the green curve when ∂A∗(t)/∂J is the greatest.

2 Estimating Ratios of Pool Sizes
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Figure 3: (b) Histogram of the bias of ρA1,A2 , estimated from only relative quantitation of A1 and A2.
Parameter values used for generating the simulated data: A1 = J = 1 and A2 = 2. Considering the
separation of concentration scale between A1 and A2 can easily be huge in reality (Section ??), being
able to narrow down the pool size ratio to a 100% interval as the figure shows should be considered
an achievement.
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Figure S1: Estimating the pool size ratios. (a) An illustration of how pool size ratio can be
inferred from relative quantitation data: after normalization, the more the second metabolite lags
behind the first one, the larger its pool size is relative to the first one. (b) A histogram of the
bias of ρA1,A2 , estimated from only relative quantitation of A1 and A2. Parameter values used for
generating the simulated data: A1 = J = 1 and A2 = 2. Considering the separation of concentration
scale between A1 and A2 can easily be huge in reality (see the last paragraph in the section on
selecting measuring times), being able to narrow down the pool size ratio to a 100% interval as the
figure shows should be considered an achievement.

mentioned in Section 3.1 and ??, most isomers are probably close to equilibrium, making lumpings
rather innocuous; (c) as mentioned in Section ??, rKFP is usually robust to using reduced models.

hhhhhhhhhhhhhhhhhReduction scenario
Method

KFP rKFP

Metabolite removal

Underestimates J ; worsens as the
removed pool size increases; error

ratio roughly constant at 0.35
(Fig. ??)

Under-/over-estimates rJ when
the removed pool size increases
more/less than others; worsens
as the pool size increases; likely
robust due to canceling; error ratio
decreases as the pool size or its
change ratio increase (Figs. ??
& 6c)

Lumping of serial isomers

Underestimates J ;
underestimation worsens as q

approaches 0.5 and the lumped
pool size increase; error ratio

decreases similarly (Figs. 7a & 6a)

Lumping of parallel isomers

Underestimates J when q < 0.5
and overestimates when q > 0.5;
worsens as the lumped pool size
increases; error ratio decreases

similarly (Figs. 7b & 6b)

Table 1: Summary of the effects of missing data and the bias introduced by reduced models

4 Reversible Fluxes
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Figure 8: (a) The dependence of (J++J−)/(J+−J−) on ∆G. Marked in the plot are the ∆G’s (semicircles) and
(J+ + J−)/(J+ − J−) (bars) of the reactions in glycolysis (∆G’s from[3]; abbreviation schemes of the reactions
in Fig. ??). (b) Convergence of substrate and product pools into one. The solid line represents the 13C-labeled
substrate and the dashed line the 13C-labeled product.

5 Measuring Times

This section discusses the selection of measuring times for (r)KFP, and we hope that they would
shed light on both the experimental designs and conceptual underpinnings of (r)KFP.

8

Figure S2: The effect of reaction reversibility on KFP. (a) The dependence of (J++J−)/(J+−
J−) on ∆G. Marked in the plot are the ∆G’s (semicircles) and (J+ + J−)/(J+ − J−) (bars) of the
reactions in glycolysis (∆G’s from [1]; abbreviations of the reactions: HK: hexokinase; HPI: hexose-
phosphate isomerase; PFK: phosphofructokinase; ALD: aldolase; TPI: triose-phosphate isomerase;
GAPDH: glyceraldehyde 3-phosphate dehydrogenase; PGK: phosphoglycerate kinase; PGM: phos-
phoglycerate mutase; ENO: enolase; PK: pyruvate kinase. (b) Convergence of substrate and product
pools into one. The solid line represents the 13C-labeled substrate and the dashed line the 13C-labeled
product.
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(d) Fitting of experimental data. UGLU is included here to suggest a small flux in glycogen synthesis, which can be seen
by the labeled-UGLU slowly approaching the pool size in both conditions.15

Figure S3: Analysis of experimental data. Fitting of experimental data. UGLU is included
here to suggest a small flux in glycogen synthesis, which can be seen by the labeled-UGLU slowly
approaching the pool size in both conditions.
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S1 KFP Solution for a Metabolic Pathway

In this section, some of the mathematical structure of 13C-label infiltrating dynamics along a linear
metabolic network, or a metabolic pathway, is presented.

Like the toy system in Introduction, the pathway of n metabolites (Figure S4a) is switched from
a 12C environment to a 13C one at t = 0, and the 13C label will gradually infiltrate the pools of all
metabolites along the pathway.
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Figure S4: (a) Diagram of a metabolic pathway of n metabolites. One-dimensional metabolic net-
work. (b) Trajectories of the first seven metabolites. Parameter values for simulating the trajectories:
J = Ak = 1 (k = 1, ..., 7).

First, one can write down the system of ODEs (µk ≡
J

Ak
):

dA∗1
dt

= J − J A
∗
1

A1
= J − µ1A∗1,

dA∗k
dt

= J
A∗k−1
Ak−1

− J A
∗
k

Ak
= µk−1A

∗
k−1 − µkA∗k, k = 2, ..., n,

(S1)

which can be written in the matrix form:

d

dt


A∗1
A∗2
A∗3
...
A∗n

 =


−µ1 0 0 · · · 0 0
µ1 −µ2 0 · · · 0 0
0 µ2 −µ3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · µn−1 −µn




A∗1
A∗2
A∗3
...
A∗n

+


J
0
0
...
0

 , or

dA∗

dt
= MA∗ + J = f(A∗,θ), (S2)

where θ = (µ1, . . . , µn, J).
It is a linear system of ODEs with a constant nonhomogeneous term, which can be turned into a

linear homogeneous system of ODEs through a translation of A∗. Assuming matrix M has n distinct
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eigenvalues (more below), and using the relevant theory of linear homogeneous systems of ODEs [3],
the general solution to Eq. S2 can be written as:

A∗k(t) =
n∑
i=1

aki e
λit + ck, (S3)

which says A∗k(t) is a linear combination of eλit plus a translation term, where λi’s are the
eigenvalues of matrix M and aki are arbitrary constants.

Having pinned down the form of the general solution, we can further simplify it using a few
considerations:

• Matrix M is bidiagonal, implying that its eigenvalues are its diagonal elements: λi = −µi; then
the assumption of distinct eigenvalues translates to distinct µ’s, or distinct Ai’s (distinct pool
sizes for all metabolites), a generic case in reality.

• By physical intuition, the dynamics of A∗k should depend only on J and the pool sizes of the
metabolites upstream of it, but not downstream, implying aki = 0 (i > k).

• A∗k(∞) = Ak, implying ck = Ak.

• A∗k(0) = 0, implying

k∑
i=1

aki = −Ak.

Therefore, Eq. S3 can be written as:

A∗k(t) = Ak

(
1−

k∑
i=1

bki e
−µit

)
, where bki = −aki /Ak and

k∑
i=1

bki = 1. (S4)

Finally, we use the method of integrating factor to solve for the constant coefficients bki ’s. Recall
that for a first-order linear ODE y′ + f(t)y = g(t), an integrating factor is a function h(t) such
that, when multiplied to the equation, the left-hand side can be written as (h(t)y)′. The resulting

ODE of h(t), h′ = f(t)h, has the solution h(t) = e
∫
f(t)dt, and hence the ODE of y has the solution

y(t) =
1

h(t)

∫
h(t)g(t)dt [2].

We rewrite Eq. S1 in the form in the preceding paragraph:

dA∗k
dt

+ µkA
∗
k = µk−1A

∗
k−1, (k = 2, ..., n) (S5)

and the integrating factor is h(t) = eµkt, which gives the following expression of A∗k(t):

A∗k(t) =
1

h(t)

∫
h(t)µk−1A

∗
k−1dt. (S6)

Plugging in the general form of A∗k−1(t) in Eq. S4, we have:

A∗k(t) = e−µkt
∫
eµktµk−1Ak−1(1−

k−1∑
i=1

bk−1i e−µit)dt

= Je−µkt
(∫

eµktdt−
∫ k−1∑

i=1

bk−1i e(µk−µi)tdt

)

= Je−µkt
(

1

µk
eµkt −

k−1∑
i=1

bk−1i

∫
e(µk−µi)tdt

)

= J

(
1

µk
− e−µkt

k−1∑
i=1

bk−1i

1

µk − µi

(
e(µk−µi)t + ci

))
.
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Using the initial condition A∗k(0) = 0 allows us to find out the values of ci’s:

ci = −1 +
µk − µi

bk−1i µk(k − 1)

Plugging the values of ci’s back to the equation:

A∗k(t) = J

(
1

µk
−
(
k−1∑
i=1

bk−1i

µk − µi

)
e−µit −

(
1

µk
−
k−1∑
i=1

bk−1i

µk − µi

)
e−µkt

)

=
J

µk

(
1−

((
k−1∑
i=1

µk
µk − µi

bk−1i

)
e−µit +

(
1−

k−1∑
i=1

µk
µk − µi

bk−1i

)
e−µkt

))
,

and comparing it to the general form of A∗k(t) = Ak(1−
k∑
i=1

bki e
−µit), we can conclude:

bki =
µk

µk − µi
bk−1i , i = 1, ..., k − 1;

bkk = 1−
k−1∑
i=1

bki

Since we know A∗1(t) = A1(1−e−µ1t) and hence b11 = 1, the boxed equations constitute a recursion
rule from which all bki ’s can be solved.

Example of A∗2(t):

b21 =
µ2

µ2 − µ1
b11 =

µ2
µ2 − µ1

, b22 = 1− b21 =
−µ1

µ2 − µ1
;

A∗2(t) = A2

(
1−

(
b21e
−µ1t + b22e

−µ2t))
= A2

(
1−

(
µ2

µ2 − µ1
e−µ1t +

−µ1
µ2 − µ1

e−µ2t
))

= A2

(
1−

(
A1

A1 −A2
e
− Jt
A1 +

−A2

A1 −A2
e
− Jt
A2

))
. (S7)

Remarks:

1. Eq. S4 says that A∗k(t) is an exponential approach consisting of an affine combination of k
exponentials, corresponding to the actions of k metabolite pools from A1 to Ak.

2. We use A∗2(t) to illustrate two detailed features as it is the simplest example of a mixture of ex-
ponentials. First, different exponentials in the mixture correspond to the dynamics of different
characteristic time-scales, and at the largest characteristic time-scale, the largest contribution
to the mixture comes from the slowest exponential; in the case of A∗2(t), it means at late times,
the trajectory is well approximated by the slower exponential corresponding to the action of
the larger pool (Figure S5). Second, by Taylor expanding A∗2(t) at t = 0 we find that both

the constant and the first-order terms are zero, and the second-order term is
Jt

A1
Jt, which has

the following interpretation: when t is small, the A1 pool mostly takes in 13C-label without
much depleting it, and the proportion of 13C-label in A1 pool increases approximately linearly
in time: Â1

∗
(t) = Jt

A1
; the same can be said for the little amount of 13C in A1 that does move

to A2, hence the second-order approximation (Figure S5).

3. The same reasoning in Remark 2 can be applied to other metabolites: A∗k(t) is approximated

by its slowest exponential at late times, and by the polynomial

k−1∏
i=1

Jt

Ai
Jt at early times.
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4. It can be shown that A∗k(t) is invariant with respect to a permutation of the metabolites A1 to
Ak−1: the dynamics of A∗k(t) depends only on the concentrations of A1 to Ak−1, but not their
ordering (Figure S5). This has an important implication that for a bipartition q of a metabolite
pool Ai, the dynamics of all A∗j (t) (j > i) are symmetric in q with respect to q = 0.5 (hence
the symmetry in Figure S17a).
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Figure S5: Several normalized trajectories illustrating the dynamics of A∗2(t). First, both the blue
and green curves represent A∗2(t) and are different in that the pool sizes of A1 and A2 are exchanged;
that the two curves overlap suggests the permutation invariance discussed in Remark 4. Second,
the red curve represents the dynamics of a single metabolite of the pool size the larger one of A1

and A2, and that it approaches the green curve quickly at late times suggests the domination of the
slower exponential in a mixture at late times. Third, the cyan curve represents the second-order
approximation to A∗2(t) at t = 0. Finally, the magenta curve represents the dynamics of a single
metabolite of pool size the sum of A1 and A2, and in the section on measuring times it suggests that
it to a good approximation shares with the green curve when ∂A∗(t)/∂J is the greatest.
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S2 Applying (r)KFP to Metabolic Cycles

Inspired by the popular concept of “network motifs” from studies of transcriptional networks [5], we
try to formulate some basic “architectural motifs” of metabolic networks, and identify three broad
classes: linear pathways, branch points, and cycles. Loosely speaking, they carry out biological
functions in different ways and have different biological significance: linear pathways are a series
of chemical reactions that directly convert raw materials into desired products, while cycles serve
as “conveyor belts” that perform the conversion between materials that themselves are not directly
enzymatically linked; branch points serve as decision points for channeling the materials into different
fates and uses [6].
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Figure S6: “Architectural motifs” of metabolic networks.

The main text has described and demonstrated the capacity of KFP and rKFP for estimating the
fluxes in linear pathways and branch points. It behooves us to discuss the remaining case of cycles,
the subject of this section.

We first observe that, as a result of the fundamental “conveyor belt” design of cycles, they always
involve reactions that have more than one substrate, and these reactions are of two kinds: those
involving cofactors and those around the entry point of the cycles (such as the reactions catalyzed by
citrate synthase in TCA cycle and RuBisCO in Calvin Cycle). For multi-substrate reactions involving
the common cofactors such as ATP/ADP and NADH/NAD+, the reaction equations are of the forms
A+ATP ←→ AP + ADP or A+NADH+H+ ←→ B + NAD+, where cofactors do not participate
in the shuffling of the carbon backbones of the substrates. This is in contrast to multi-substrate
reactions at the entry point of the cycles, which shuffle the carbon backbones of the substrates and
pose challenges to KFP and rKFP modeling, as we explain below.

Take citrate synthase as an example. The reaction equation is acetyl-CoA + oxaloacetate ←→
citrate + CoA, where the two-carbon acetyl group of acetyl-CoA is attached to the four-carbon
oxaloacetate to form the six-carbon citrate. We claim that (r)KFP as it currently stands cannot
handle reactions where the carbons of a product have more than one source, such as citrate in this
case. First, when there are two sources of carbons for a product, it can have multiple labeling
states: for example, fully labeled acetyl-CoA reacts with unlabeled oxaloacetate to form citrate
labeled in two carbons, while unlabeled acetyl-CoA reacts with fully labeled oxaloacetate to form
citrate labeled in four carbons; this deviates the assumption in (r)KFP that a metabolite is either
labeled or unlabeled (hence our notation of A∗ for the labeled state). Second, a full description of all
the labeling states of a metabolite and their dynamics requires the knowledge of carbon transition
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between reactions: for example, the carbon transition map of citrate synthase can be represented
as 1 2 -CoA + 3 4 5 6 ←→ 2 1 4 5 6 3 + CoA, where the circles represent carbon
atoms and the numbering keeps track of their transition in a reaction; in comparison the transitions of
labeled to labeled and unlabeled to unlabeled as considered by (r)KFP are much simpler. It is worth
noting that most biochemical reactions involve more than one substrate [7]; moreover, if a reaction
involving one substrate but multiple products (a cleavage reaction) is reversible, which is technically
always true and practically usually so, then the reverse reaction would be of a multi-substrate kind.
Therefore, this nuisance case in the eyes of (r)KFP is actually a general one.

To model the carbon transition of these multi-substrate reactions, a natural approach is to expand
the state variables to incorporate all possible labeling states and model their dynamics by using
the knowledge of carbon transitions of the relevant reactions [8]; this approach is equivalent to a
kinetic version of metabolic flux analysis (kMFA) [9], as MFA traditionally considers only steady-
state [10]. In short, kMFA reduces to KFP when there are only two labeling states, and reduces
to MFA when restricted to steady-state. Note that when more than two labeling states have to be
considered, generally the state space and model complexity are huge, and efforts of simplifying them
are involved [12].

Fortunately, Szecowka et al. proposed a clever variant of KFP [11] that is able to handle multi-
substrate reactions, which they term extended KFP, or eKFP. The method allows them to estimate
the fluxes of Calvin Cycle in Arabidopsis without having to deal with the complexity of (k)MFA.
Below we briefly describe their method, and apply the rKFP version of it (which we term reKFP)
to estimate relative flux changes of a simplified TCA cycle using simulated data, demonstrating the
capacity of (r)KFP for metabolic cycles.

It is mentioned above that when there are multiple carbon sources for a product in a reaction,
it has multiple labeled states and keeping track of their dynamics requires the knowledge of carbon
transitions of the reaction. The central idea of eKFP is that in contrast there is always only one unla-
beled state and its dynamics is always simple and requires no knowledge of atom transition. Consider
again the example of citrate synthase: there is only one unlabeled state of citrate (unlabeled in all
six carbons) and the only way to generate this state in the reaction is unlabeled acetyl-CoA reacting
with unlabeled oxaloacetate. Therefore, instead of modeling the labeled states as in (r)KFP, eKFP
models only the unlabeled states, and bypasses all the complexity entailed by the carbon scrambling
in a multi-substrate reaction. Clever as it is, the approach has two drawbacks: conceptually, much
information is lost by discarding all data of the labeled metabolites; practically, measurements of
unlabeled metabolites are often inflated by an unknown amount due to the contamination of media
in the sample. Using simulated data below that suffer no media contamination, we adopt the idea
of eKFP and combine it with rKFP; the resulting reKFP is shown to be applicable to cycles.

Figures S7a and S7b show the diagrams of the metabolic networks used in our simulation: they
are adapted from a pioneering and systematic study of fluxomic changes before and after viral
infection [13], simplified to some extent but still maintaining the crucial features including the TCA
cycle; the numbers of pool sizes and fluxes are adapted from the study as well, from which simulated
data are generated. Applying reKFP to the simulated data reliably uncovers the relative flux changes
used in the simulation (Figure S7c).

To summarize, (r)KFP can be applied to metabolic cycles by using the idea of modeling only the
unlabeled state from eKFP. The resulting method is less powerful than a full-blown kMFA since it
uses only part of the data, but enjoys a tremendous reduction of model complexity. In modeling the
data of unlabeled metabolites, one has to be careful about the bias introduced by the media to the
sample.
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(c) Estimation results.

Figure S7: The two metabolic networks are adapted from [13], corresponding to before and after viral infection studied
in the paper respectively. The numbers in parentheses near metabolites denote pool sizes, and numbers near reaction
arrows denote fluxes, also adapted from [13]. The dashed box around ACA denotes missing data and PYR in cytosol
and mitochondria share one single pool, both in accordance with the study. The red dots in Panel (c) denote the values
of rJ used in the simulation. Measuring times for generating simulated data are set to be 1, 2, 3, 5, 10, 15 and 20
minutes. Abbrevation schemes: H6P: hexose-6-phosphate (G6P+F6P); T3P: triose-3-phosphate (DHAP+GAP); PG:
phosphoglycerate (3PG+2PG); PNP: pentose-phosphate; ACA: acetyl-CoA; CIT: citrate; AKG: alpha-ketoglutarate;
MAL: malate; OAA: oxaloacetate.
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S3 Missing Data and Reduced Models

S3.1 Metabolite Removal: An Analytical Approach

In the main text, we describe how metabolite removal affects both KFP and rKFP using a compu-
tational approach: mimicking the practical situation, a few time points along the trajectories are
selected to constitute data used for estimating parameters. In this section, we describe a comple-
mentary approach that allows for analytical insight. We first describe in details how it is applied to
metabolite removal in KFP, and sketch the results for metabolite removal in rKFP.

S3.1.1 KFP

Figure S8a sketches a cartoon of metabolite removal in KFP; it is made even simpler than the one
in the main text to be analytically tractable: for a linear pathway of two metabolites, the first one
is hard to measure and therefore removed in the reduced model. The metabolite that provides data
and is used for fitting is hence just the second metabolite A2, and Figure S8b plots its trajectories
in both the full and reduced models: in the full model, due to the slowing-down of the spreading of
13C label by the A1 pool, A∗2 has an initial lag (Figure S5), whereas in the reduced model since A1

is absent, A∗2 (or Ã∗2 in this case;˜denotes quantities in the reduced model) is simply the exponential
approaching function. Paramterized by the fitting parameter J̃ , Ã∗2 tries to fit A∗2 as well as it can;
in the computational approach, the goodness of fit is measured by its closeness to A∗2 at a number
of discrete time points, whereas an alternative measure for the goodness-of-fit is the area between
the two curves (the shaded region in light red): the greater the area of the region, the poorer the

fit. To further extend the analytical tractability, instead of the area which would be

∫ ∞
0
|Ã∗2−A∗2|dt

(technically the distance between Ã∗2 and A∗2 using L1 norm), we use the square of the difference:∫ ∞
0

(Ã∗2−A∗2)2dt (technically the distance between Ã∗2 and A∗2 using L2 norm), called the cost of the

fitting which is a function of J̃ , C(J̃), and the goal is to find J̃ that minimizes C(J̃).

A1 A2

A2

J J J

J
~

J
~

(a) Diagram of the models used
in the analysis.
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(Ã
∗
2 −A

∗
2 )2 dt

A2

A ∗
2

Ã
∗
2

(b) Parameter values used for the simulation: A1 =
A2 = J = 1.

Figure S8: Metabolite removal in KFP.

Before we proceed to describe the method, we note that using as the definition of C(J̃) the
integral of squared differences over a continuous region, rather than the sum of squared differences
over a discrete set of points, has two immediate advantages. First, it does not require selecting a set
of measuring times and makes comparing estimation results using different parameters much easier
(one of the uses of the method of selecting measuring times described in the main text is to enable
such comparison). Second, since the integration is from the origin to infinity, it requires that both
Ã∗2 and A∗2 have the same saturation level A2 (the red line in Figure S8b) (otherwise C(J̃) would be
infinite), and enables us to focus on the comparison of J .
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To continue investigating how metabolite removal affects KFP using the analytical approach, we
first write down the formula for Ã∗2 and A∗2. Section S1 gives that:

A∗2(t) = A2

(
1−

(
A1

A1 −A2
e
− Jt
A1 +

−A2

A1 −A2
e
− Jt
A2

))
;

Ã∗2(t) = A2

(
1− e−

J̃t
A2

)
.

They give C(J̃):

C(J̃) =

∫ ∞
0

(Ã∗2 −A∗2)2dt

=

∫ ∞
0

(
A2

(
1− e−

J̃t
A2

)
−A2

(
1−

(
A1

A1 −A2
e
− Jt
A1 +

−A2

A1 −A2
e
− Jt
A2

)))2

dt

= A2
2

∫ ∞
0

((
A1

A1 −A2
e
− Jt
A1 +

−A2

A1 −A2
e
− Jt
A2

)
− e−

J̃t
A2

)2

dt

= A2
2

(( A1

A1 −A2

)2 1
2J
A1

+ 2
A1

A1 −A2

−A2

A1 −A2

1
J
A1

+ J
A2

+
( −A2

A1 −A2

)2 1
2J
A2

−

2
( A1

A1 −A2

1
J
A1

+ J̃
A2

+
−A2

A1 −A2

1
J
A2

+ J̃
A2

)
+

1
2J̃
A2

)

To find J̃ at which C(J̃) is minimum, we differentiate C(J̃) with respect to J̃ and set it to zero:

dC(J̃)

dJ̃
= 0. (S8)

We define two new dimensionless variables:

ρ ≡ A1

A2
, pool size ratio (note that ρ ≡ A2

A1
in the main text);

β ≡ J̃ − J
J

, bias (defined in the main text).

Substituting them into Eq. S8 and simplifying the equation we get:

3ρ2β4 + 6ρ(1 + 3ρ)β3 + 3(1 + 6ρ+ 13ρ2)β2 + 4(1 + 4ρ+ 9ρ2)β + 4ρ(1 + 3ρ) = 0 (S9)

We pause here and highlight an important observation: after simplification no variables with
units such as J or A2 remain in Eq. S9, which means that the functional relationship as defined by
Eq. S9 between the two dimensionless variables, ρ and β, is an intrinsic one and does not depend
on the scale: the relative bias in the estimated J depends only on the relative pool size difference
between the two metabolites. This also justifies one aspect of the computational approach used in
the main text: there some values of J and A’s are used in the simulation and here it says that the
results there hold regardless what values are chosen for the parameters as long as their relative ratios
are properly controlled which is the case.

Figure S9 plots the functional relationship between β and ρ and summarizes the result: β decreases
from 0 as ρ increases from 0; in other words, there is little bias when the A1 pool size is negligibly
small compared to A2, and J is increasingly underestimated when the A1 pool size relative to A2

increases, all making sense given the intuition described in the main text.

12



0 2 4 6 8 10

ρ

1.0

0.8

0.6

0.4

0.2

0.0

β

Figure S9: Dependence of bias β on pool size ratio ρ.

S3.1.2 rKFP

To apply the same analytical approach to metabolite removal in rKFP (a diagram of the reduction
is provided in Figure S10a), we first write down the equations for a∗2 in both conditions in the full
model:

a∗2x(t) = a2

(
1−

(
A1

A1 −A2
e
− Jt
A1 +

−A2

A1 −A2
e
− Jt
A2

))
= a2

(
1−

(
A1

A1 −A2
e−µ1t +

−A2

A1 −A2
e−µ2t

))
;

a∗2y(t) = a2

(
1−

(
r1A1

r1A1 − r2A2
e
− RJt
r1A1 +

−r2A2

r1A1 − r2A2
e
− RJt
r2A2

))
= a2

(
1−

(
r1A1

r1A1 − r2A2
e
−Rµ1t

r1 +
−r2A2

r1A1 − r2A2
e
−Rµ2t

r2

))
,

where r1 and r2 and R are the relative changes for the pool sizes A1, A2 and flux J respectively,
and µ1 ≡ J/A1 and µ2 ≡ J/A2 are the rates. The corresponding equations in the reduced model are:

ã∗2x(t) = a2

(
1− e−

J̃t
Ã2

)
= a2

(
1− e−µ̃2t

)
;

ã∗2y(t) = a2

(
1− e−

R̃J̃t
r2Ã2

)
= a2

(
1− e−

R̃µ̃2t
r2

)
,

where quantities a2 and r2 are the same as those in the full model as forced by the cost of
integrating from 0 to ∞, while quantities µ2 and R are potentially different from those in the full
model (as denoted by )̃. The cost is hence:

C(µ̃2, R̃) =

∫ ∞
0

(
(ã∗2x − a∗2x)2 + (ã∗2y − a∗2y)2

)
dt,

which evaluates to a complicated expression that we neglect here. We proceed in similar steps
as in the KFP case: differentiating C(µ̃2, R̃) with respect to µ̃2 and R̃, setting them to zero, making

substitutions ρA ≡
A1

A2
, ρr ≡

r1
r2

, βµ ≡
µ̃2 − µ2
µ2

and βR ≡
R̃−R
R

, and simplifying the equations.

Finally we reach two equations that define a function that maps from (ρA, ρr) to (βµ, βR):
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(βµ + 2) 2 (ρA (βµ + 1) + 1) 2
(
3ρ2A (βµ + 1) 2ρ2r (βR + 1) 2 (βµ + (βµ + 1)βR + 2) 2

+ 2ρA (βµ + 1) ρr (βR + 1)
(
3βµ (βµ + 2) + 3 (βµ + 1) 2β2R + 6 (βµ + 1) 2βR + 2

)
+ 3β2µ + 4βµ + 3β2µβ

2
R + 6βµβ

2
R + 6β2µβR + 10βµβR + 3β2R + 4βR

)
+ (βR + 1) (βµ + (βµ + 1)βR + 2) 2

(
3ρ2A (βµ + 1) 2 (βµ + 2) 2

+ 2ρA (βµ + 1) (3βµ (βµ + 2) + 2) + βµ (3βµ + 4)
)

(ρA (βµ + 1) ρr (βR + 1) + 1) 2 = 0;

3ρ2A (βµ + 1)2 ρ2r (βR + 1)2 (βµ + (βµ + 1)βR + 2)2

+ 2ρA (βµ + 1) ρr (βR + 1)
(

3βµ (βµ + 2) + 3 (βµ + 1)2 β2R + 6 (βµ + 1)2 βR + 2
)

+ 3β2µ + 4βµ + 3β2µβ
2
R + 6βµβ

2
R + 6β2µβR + 10βµβR + 3β2R + 4βR = 0.

A1x A2x

A1y A2y

Jx Jx Jx

Jy Jy Jy
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~

Jx
~

Jy
~
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~

(a) Diagram of the models used in the analysis.
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and its similarity to Figure 3b in the main text.
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Figure S10: Metabolite removal in rKFP.
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Figure S10b plots the functional dependence of βR on ρA and ρr. To interpret it, it is worthwhile

examining the definition of ρr again: ρr ≡
r1
r2

, which is the ratio of relative pool size changes between

A1 and A2. A potentially more illuminating interpretation of the quantity can be obtained by

rewriting it as ρr ≡
r1
r2

=
r1A1
A1

r2A2
A2

=
r1A1
r2A2

A1
A2

=
ρAy
ρAx

, where ρAx and ρAy are the pool size ratios between

the two metabolites in the two conditions respectively (ρAx is written as ρA for short hitherto); in
other words, ρr is also the ratio in the relative pool size comparison of the two metabolites between
the two conditions. Figure S10b shows that βR = 0 when ρr = 1, or, in words, when the two
metabolite pools change by the same relative amount between the two conditions, which leads to
the same pool size ratios between the two metabolites in the two conditions, there is no bias in
the estimated relative flux change. Combined with the result in KFP (i.e., the relative pool size
ratio between the two metabolites determines the bias in the estimated flux), that βR = 0 when
ρr = 1 can be interpreted as that there is no bias in the relative flux change relative because the
biases introduced separately to the estimated fluxes in the two conditions cancel out due to the
same relative pool size ratios in the two conditions. Having understood this, the rest of the figure
is straightforward to interpret: when ρr > 1, the relative pool size ratio in the condition (ρAy) is
greater than in the control (ρAx), causing more downward bias in the condition than in the control,
hence causing R to be underestimated, and vice versa when ρr < 1; the bias in R get more severe as
ρA increases due to the nonlinear dependence of βJ on ρA in KFP (Figure S9). Roughly speaking,
ρr determines the sign of βR, and ρA determines the magnitude.

Figure S10c plots the dependence of βµ, the bias in the estimated rate, on ρA and ρr, which shows
the lack of dependence on ρr; replotting the dependence on ρA only gives Figure S10d, which is of
exactly the same shape as Figure S9. Combined with our interpretation of the dependence of βR
above, this suggests an important idea on understanding rKFP: when it comes to the bias in rKFP,
it might be conceptually decomposable into two separate KFPs, examining the bias introduced in
each of them, and combining them afterwards. We have verified this idea to be working in the case
of metabolite removal, hence significantly simplifying our understanding of the problem. However,
numerical experiments show that it is not completely working in the case of pathway removal (agree
only roughly); it is an interesting open problem in what cases an rKFP is decomposable to two KFPs
in terms of bias.

S3.2 Pathway Removal

Another common reduction is to remove branching pathways with poor data coverage: if a branching
pathway has few metabolites reliably measured, one feels tempted to leave it out. Here we investigate
the bias introduced in this way, and the conditions for the bias to be small.

S3.2.1 KFP

Figure S11a draws a cartoon of the reduction in KFP: two pathways branch out of A1 and one of
them has poor data coverage (e.g., A2 is poorly measured), and therefore a reduced model with
the pathway removed is used for estimating J . Figure S11b illustrates the consequence of using the
reduced model: given J1 = J̃ , in the reduced model where there is no flux leaking out of A1 to A2,
all flux goes to A3 which makes Ã∗3 saturate faster than A∗3 in the full model, while Ã∗1 is the same
as A∗1; therefore, in order to fit to the actual slow-saturating A∗3, the reduced model has to lower J̃
to slow down Ã∗3, causing underestimation of J .
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Figure S11: Pathway removal in KFP.

We now apply the analytical approach to the reduction. First we write down the equations for
the variables used as data in both the full and reduced models:

A∗1 = A1

(
1− e−

J1t
A1

)
,

A∗3 = A3

(
1−

(
J3
A3

J3
A3
− J1

A1

e
−J1t
A1 +

− J1
A1

J3
A3
− J1

A1

e
−J3t
A3

))
;

Ã∗1 = A1

(
1− e−

J̃t
A1

)
,

Ã∗3 = A3

(
1−

(
J̃
A3

J̃
A3
− J̃

A1

e
− J̃t
A1 +

− J̃
A1

J̃
A3
− J̃

A1

e
− J̃t
A3

))
.

Next we substitute in the rate variables to simplify the equations: µ1 ≡
J1
A1
, µ3 ≡

J3
A3
, µ̃1 ≡

J̃

A1

and µ̃3 ≡
J̃

A3
. Then one can write down the cost as a function of µ1, µ3, µ̃1, µ̃3, A1 and A3:

C(µ1, µ3, µ̃1, µ̃3, A1, A3) =

∫ ∞
0

(
(Ã∗1 −A∗1)2 + (Ã∗3 −A∗3)2

)
dt.

Once the cost is evaluated, the expression of which we omit here due to its complexity, one can

make two more substitutions to nondimensionalize the variables: ρA ≡
A3

A1
and ρJ ≡

J3
J1

, and the

resulting expression of the cost becomes a function of µ1, µ̃1, ρA and ρJ . Setting the derivative of
the cost with respect to µ̃1 to zero, which is equivalent to setting its derivative with respect to J̃ to
zero as J̃ and µ̃1 are different by a constant A1, and making one final substitution to introduce the

bias variable: β ≡ J̃ − J1
J1

, we get an equation of β, ρA and ρJ (note that like the case in metabolite

removal, the variable with dimension, µ1, drops out after simplification), which defines a function
mapping from (ρA, ρJ) to β:
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(
β2 + 3β + 2

)2
ρ8A
(
3(β + 1)2 − 2(β + 1)ρJ − ρ2J

)
+ (β + 1)(β + 2)2ρ7A

(
(6β + 11)(β + 1)3 −

(
2β2 + 11β + 9

)
ρ2J − 2ρ3J

)
+ (β + 2)2ρ6A

((
3β2 + 16β + 16

)
(β + 1)4 +

(
3β2 − 17

)
(β + 1)2ρ2J

− 4
(
β2 + 4β + 3

)
ρ3J + 2(3β + 7)(β + 1)4ρJ − ρ4J

)
+ β

(
3β2 + 7β + 4

)
ρAρJ (β + ρJ + 1) 2

(
2(β + 1)2 + (β + 3)ρJ

)
+ ρ5A

((
5β4 + 36β3 + 98β2 + 112β + 44

)
(β + 1)4

+ 4
(
4β4 + 26β3 + 61β2 + 59β + 19

)
(β + 1)3ρJ

+
(
17β4 + 90β3 + 141β2 + 44β − 32

)
(β + 1)2ρ2J

+ 2
(
3β5 + 15β4 + 13β3 − 37β2 − 72β − 34

)
ρ3J − (β + 2)2(2β + 5)ρ4J

)
+ ρ4A (β + ρJ + 1) 2

((
3β4 + 24β3 + 56β2 + 48β + 12

)
(β + 1)2

+
(
3β4 + 12β3 + 4β2 − 24β − 20

)
ρ2J + 2

(
5β5 + 29β4 + 66β3 + 70β2 + 32β + 4

)
ρJ
)

+ ρ3A (β + ρJ + 1) 2
(
β
(
3β2 + 13β + 12

)
(β + 1)3

+
(
5β4 + 20β3 + 26β2 + 8β − 4

)
ρ2J + 2

(
3β5 + 21β4 + 52β3 + 56β2 + 24β + 2

)
ρJ
)

+ β(3β + 4)ρ2A (β + ρJ + 1) 2
(
(β + 1)4 + 2(β + 3)(β + 1)2ρJ + (β + 2)2ρ2J

)
+ β(β + 1)2(3β + 4)ρ2J (β + ρJ + 1) 2 = 0.

The fact that β depends only on ρA and ρJ is not a trivial one: it says that the relative bias
depends only on the relative pool size ratio and the relative flux distribution, and has nothing to do
with the absolute scale of the pool sizes or fluxes; this is consistent with the results in the case of
metabolite removal.

Figure S12 plots the functional dependence of β on ρA and ρJ , from which several salient features
stand out. First, β is negative: this is consistent with the reasoning above on the underestimation
of J (Figure S11b). Second, β is small (in magnitude) when ρA is small: when the A1 pool is much
larger than A3 pool, most of the fitting cost comes from A1 (due to its larger scale) rather than A3

and therefore the fitting becomes insensitive to the dynamics of A∗3 which is the only thing changed
in the reduced model (Figure S11b). Third, when ρA exceeds around 0.5, β shows a strong positive
dependence on ρJ : the bias gets more severe with the proportion of flux leaking to A2, which makes
intuitive sense as the more flux leaks to A2, the more the reduced model deviates from the full one.
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(a) Heatmap of β as a function of ρA and ρJ . (b) 3D-view of the same function.

Figure S12: How pathway removal affects KFP.
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To sum up, for the pathway removal and KFP in Figure S11a, the bias in the estimated flux is
small when the metabolite at the branch point dominates the other in pool size (A1 � A3) or most
of the flux goes down the retained pathway rather than leaks to the removed one (J3 � J2). Below
we will see how this result can also be used to understand the bias of pathway removal in rKFP.

S3.2.2 rKFP

We last discuss how pathway removal affects rKFP. Figure S13a shows a diagram of the reduction.
Using the same steps in the analytical approach again, where the cost is now an integral of four
terms,

C =

∫ ∞
0

(
(ã∗1x − a∗1x)2 + (ã∗1y − a∗1y)2 + (ã∗3x − a∗3x)2 + (ã∗3y − a∗3y)2

)
dt,

we find that in this final case the bias in the parameter of interest, the relative flux change
R1 ≡ J1y/J1x, has lost its previous simple mathematical structure and is now a function of six

dimensionless variables: βR ≡
R̃−R1

R1
= f(r1, R1, ρA, ρr, ρJ , ρR), where R̃ is the estimated relative

flux change
J̃y

J̃x
, r1 is A1’s relative pool size change

A1y

A1x
, ρA is the relative pool size difference

between the two metabolites in the control
A3x

A1x
, ρr is the relative difference in the relative pool size

changes between the two metabolites
r3
r1

(note that the relative pool size difference between the two

metabolites in the condition becomes
A3y

A1y
=
r3A3x

r1A1x
= ρrρA), ρJ is the relative proportion of flux

going to A3 in the control
J3x
J1x

, and ρR is the relative difference in the relative flux change between the

two metabolites
R3

R1
(similarly, the relative proportion of flux going to A3 in the condition becomes

ρJy =
J3y
J1y

=
R3J3x
R1J1x

= ρRρJ).
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(a) Diagram of pathway removal in rKFP.

(b) The metabolite concentrations in the condition (A1y

and A3y) are calculated by using the common assump-
tion that the reactions have Michaelis-Menten kinetics
with Michaelis constants equal to the metabolite con-
centrations in the control (A1x and A3x; e.g., [14]). ρJy
refers to the proportion of flux entering A3 in condition.
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Figure S13: How pathway removal affects rKFP.

Plotting the dependence of βR on all six variables might be neither convenient nor illuminating,
hence we seek other means to glean insight. The first thing we verify is that βR = 0 when ρR = 1
regardless of the values of other variables. This is important: when the pathway fluxes change in
same manner, there is no bias in the estimated relative flux change R, which is in spirit very similar
to the case of metabolite removal (certainly as a consequence of some kind of canceling mechanism
that is unfortunately hard to unravel altogether here due to the complexity).

However, while in the case of metabolite removal we have both theoretical expectation and em-
pirical observation that metabolites along the same pathway tend to change in a similar fashion and
indeed cancel much of the bias in rKFP estimations (see main text), in this case we have no a priori
reasons to believe that pathways also change similarly between two conditions. In fact, due to the
decision-point nature of a branch point where multiple branching pathways emanate (Figure S6),
fluxes at a branch point would likely respond differently to perturbations if the perturbations cause a
switch in metabolic decisions. Therefore, we need to investigate the dependence of βR on deviations
from perfect co-response of the pathways.

The first conclusion along this line is that if the pathway retained in the reduced model is the
major one in both conditions (i.e., both ρJx = J3x/J1x and ρJy = J3y/J1y are close to one), ρR would
still be close to one even when there is significant metabolic reprogramming. Figure S13b shows a
numerical example of this: when a branch point changes the flux configuration from (20,1,19) to
(10,2,8), the metabolic decision has changed (J2 pathway upregulated by 100% compared to others

being downregulated by 50% or more), but ρR =
R3

R1
=

8/19

10/20
=

16

19
≈ 0.84, resulting in a roughly 5%

bias of the estimated R in our numerical example. Alternatively, using the idea of ”decomposition”
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described in Section S3.1.2 handwavingly, one can think that when both ρJx and ρJy are close to
one, the result in Section S3.2.1 says that the biases introduced individually to the flux estimates of
the two conditions are small, hence making the overall bias of R in rKFP small.

Second, to assess the scenarios where the major branching pathway has switched (e.g., ρJx =
J3x/J1x is close to one while ρJy = J3y/J1y is close to zero), we use the numerical example in
Figure S13b and move the major branching pathway gradually from the J3 pathway to J2 pathway.
One has to be careful in doing this: as mentioned above βR also depends on other variables such
as ρr = r3/r1, and changing the major branching pathway from J3 to J2 (i.e., decreasing ρJy in
Figure S13b) entails changes in the concentrations of the metabolites as well through the laws of
enzyme kinetics, which in turn changes ρr. For the numerical example, if ρJy is decreased from 0.8
to 0.2, then according the computation model described in the caption of Figure S13b, A3y will no
longer be 4/15, but rather 1/18, since the laws of enzyme kinetics requires a lower concentration
to match the lower flux. Taking this concentration dependence into account, we calculate βR as
a function of ρJy (Figure S13c). Rather surprisingly, βR is well contained within 9% and actually
drops to zero even when the branch point has totally switched to J2. To explain this, we need to
invoke the other condition for a small βJ in KFP (Section S3.2.1): A1 � A3. When the J1 flux is
simply diverted from J3 to J2, A3 drops but A1 remains the same, which brings down βJ ; using the
decomposition idea again, βJ is small in control because J3 � J2, and is small in condition because
A1 � A3, hence the small βR.

To sum up, the bias in the estimated relative flux change is small when pathways change in
the same manner (R1 ≈ R3), or when the retained pathway is the major one in both conditions
(J3x � J2x and J3y � J2y); even if these two fail to hold, we are still guarded by enzyme kinetics
which keeps the bias small.

S3.3 How Lumping Isomers Affects KFP

The main text has discussed how metabolite removal affects KFP, and in this section we provide some
results and intuitions on the effects of lumping isomers on KFP. First, lumping serial metabolites
(Figure S14a): both bias (Figure S14b) and error ratio (Figure S14c) are symmetric in q with respect
to q = 0.5, which has its root in the mathematical structure of 13C moving along a pathway (see
Remark 4 in the previous section); the underestimation of J that grows as q tends to 0.5 can be
explained by the slowdown of 13C labels along the pathway by a serial bipartition of a metabolite
pool that peaks at equal bipartition (Figure S17a); error ratio decreases when A increases, suggesting
that the reward of distinguishing the isomers grows with their pool size.
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Figure S14: Lumping of serial metabolites in KFP. (a) Diagram. Parameter values and parameterization used
for generating the simulated data: A1 = A4 = J = 1, A2 = Aq, A3 = A(1− q). (b) Bias. (c) Error ratio.

Second, lumping parallel metabolites: bias (Figure S15c) is now antisymmetric in q with respect
to q = 0.5, which can be explained by a quasi-antisymmetric effect of a parallel bipartition on the
infiltration dynamics along a pathway as shown in Figure S17b.
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Figure S15: Lumping of parallel metabolites in KFP. (a) Diagram. The scenario is modeled on the reactions of
ALD and TPI in glycolysis, hence the doubling of flux in the lower half. To keep the stoichiometry comparable,
we set that one A1 forms two A and one A forms one A4 in the reduced network. Parameter values and
parameterization used for generating the simulated data: A1 = A4 = J = 1, A2 = Aq, A3 = A(1− q). (b) Bias.
(c) Error ratio.

One important cautionary note: here all reactions are assumed irreversible; however, as discussed
at the end of the section on modeling reversible reactions, most isomers are close to equilibrium, and
therefore lumping them into a single pool is probably much more innocuous than presented here;
when non-isomers are lumped, the results here become more relevant.

S3.4 Plots of costs

The plots of the costs in three cases are provided below.

0
.0

1

0
.1 1

1
0

1
0

0

A

0

0.2

0.4

0.6

0.8

1

q

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(a)

0
.0

1

0
.1 1

1
0

1
0

0

A

0

0.2

0.4

0.6

0.8

1

q

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(b)

0
.0

1

0
.1 1

1
0

1
0

0

A2

0.1

1

10

r A
2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(c)

Figure S16: Costs of the three cases. (a) KFP in lumping of serial metabolites. (b) KFP in lumping of parallel
metabolites. (c) rKFP in metabolite removal.
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S3.5 Dynamics of serial and parallel bipartition
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Figure S17: Understanding the effects of serial and parallel bipartitions on the dynamics of the
pathway. Parameter values used in generating the simulated data: A1 = A4 = J = 1 and A =
A2 +A3 = 10. (a) Dynamics of A∗4(t) in KFP applied to lumping of serial metabolites (Figure S14a).
It shows that a serial bipartition of a metabolite pool slows down 13C labels and the slowdown peaks
at equal bipartition q = 0.5. That the solid curves overlap with the dashed curves shows again the
symmetry of A∗4(t) in q about q = 0.5 (Remark 4 in the previous section; Figs S14b & S14c). (b)
Dynamics of A∗4(t) in KFP applied to lumping of parallel metabolites (Figure S15b). It shows that
a parallel bipartition of a metabolite pool affects the infiltration of 13C labels in a complex way: as
q increases from 0 to 0.5 and the bipartition changes from a concentration in A3 to an equal one,
it first slows down the dynamics, reaching the slowest around q = 0.2, and then comes back to its
starting point (the black curve overlaps with the blue one); as q increases from 0.5 to 1 and the
bipartition changes from an equal one to a concentration in A2, it short-circuits the pool and speeds
up the dynamics. In short, its effect is roughly antisymmetric about q = 0.5: slowing things down
when q < 0.5 and speeding things up when q > 0.5.

S3.6 Summary Table

The tables below summarize the results of using reduced models, give general practical suggestions,
and contain pointers to the relevant details.

Table S1: effects of different reduction scenarios (MR: metabolite removal; PR: pathway removal; L:
lumping; AI: assuming irreversibility)

Scenario Effects
Full or Reduced
Model in General

Result Reference

MR in KFP
underestimation; worsens as missing
pool size gets large

Full Figures 2, S9

MR in rKFP
worsens as missing pool size gets
large or changes differently

Full Figures 3, S10

PR in KFP
underestimation; worsens as missing
pathway gets major or pool size at
the retained pathway gets large

Full Figures S11, S12

PR in rKFP usually mild Reduced Figures S13

L in KFP
usually underestimation; usually
harmless

Reduced Figures S17a , S17b

L in rKFP usually harmless Reduced

AI in KFP
underestimation; worsens as it gets
reversible

Reduced Figure 4

AI in rKFP worsens as pool size changes differ Reduced Figure 4
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Table S2: Detailed summary of the effects of metabolite removal and lumping.

KFP rKFP

Metabolite removal
Underestimates J ; worsens as the

removed pool size increases; error ratio
roughly constant at 0.35 (Figure 2b)

Under-/over-estimates rJ when the
removed pool size increases more/less
than others; worsens as the pool size

increases; likely robust due to canceling;
error ratio decreases as the pool size or

its change ratio increase (Figures 3c
& S16c)

Lumping of serial
metabolites

Underestimates J ; underestimation
worsens as q approaches 0.5 and the
lumped pool size increase; error ratio

decreases similarly (Figures S17a
& S16a)

Lumping of parallel
metabolites

Underestimates J when q < 0.5 and
overestimates when q > 0.5; worsens as

the lumped pool size increases; error
ratio decreases similarly (Figures S17b

& S16b)
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S4 Selecting Measuring Times

This section discusses the selection of measuring times for (r)KFP, and we believe that they shed
light on both the experimental design and conceptual underpinning of (r)KFP.

As in Methods we have shown how errors of the estimates depend on Jacobian D and how D
depends on measuring times, one can formulate the problem as the following: Given a model with
one parameter θ of great inferential interest, find a collection of measuring times t = (t1, ..., tl) such
that the error of θ, σθ(t), is the smallest. θ would be J in KFP or rJ in rKFP; if more than one
parameter is of interest, the quantity to be minimized can be the product of their errors,

∏
α
σθα .

The above formulation translates the experimental design problem to an optimization one, leav-
ing little more to be said than the routine application of optimization algorithms. However, such
an approach is unsatisfying for three reasons. First, the optimization problem is computationally
nontrivial: it is nonlinear, nonconvex (Figure S19), and has constraints as the measuring times are
nonnegative and bounded; furthermore, σθ is invariant to a reordering of times but using this sym-
metry in the optimization is challenging. Second, the formulation requires detailed knowledge of
parameter values, which is unrealistic in designing real experiments where the aim is exactly to es-
timate the parameter values. Third, the optimal sampling times found in this way can be hard to
interpret physically.

Assuming having a rough prior guess, but not detailed knowledge, of the parameter values, we
modify our aim to be using the prior information and having a sensible selection of the measuring
times. We also adopt a more physical kind of reasoning for the purpose: since different labeled
metabolites rise up with their own time-scales (Figure S4b), a natural selection would be to have
different measuring times capture the dynamics of different metabolites. Below we describe our
reasonings in some details using the example of applying KFP to a linear pathway with irreversible
reactions (Figure S4a).

We first note that one natural measuring time would be a late one, one that is in the constant
regime of all metabolites, so that the scales of all metabolites can be estimated at once. With the scale
information, now consider the first metabolite A1. For pedagogical purpose, we first assume that A1

is known, equivalent to the late time being measured many times and the scale estimated with great

precision, and that one more time can be measured. That is, for the curve A∗1(t) = A1(1−e−
Jt
A1 ) with

A1 known, find a time t to minimize σJ . With only one parameter J and one measurement A∗1(t),

the Jacobian D is the scalar
dA∗1
dJ

, and, assuming constant noise, σJ is proportional to its inverse:

σJ ∝
(
dA∗1
dJ

)−1
(Methods). Since

dA∗1
dJ

= te
− Jt
A1 , we find its maximum by setting its time derivative

to 0:
∂

∂t

dA∗1
dJ

= e
− Jt
A1

(
1− Jt

A1

)
= 0, which gives us t =

A1

J
= tc, the characteristic time-scale. To

sum up, if A1 is known and only one time is measured, one should measure at tc to minimize the
error in J . This gives rise to one more significance of tc (Figure 1b).

We next relax the assumption of known A1, and pose the following problem: for the curve of
A∗1(t) with both A1 and J unknown and given two measuring times, if one is at a late time, find the
other time t to minimize σJ . Now with two measurements and two parameters, the Jacobian D is a
2-by-2 matrix, and getting the form of σJ as a function of t is more involved. After some calculations
(details in Section S4.4), we find that t ≈ 0.92 tc. In other words, if A1 is unknown but a late time
measured, one should measure at 0.92 tc to minimize the error in J , slightly earlier than when A1 is
known.

What if A1 is unknown but a late time measured, and two more times, t1 and t2, can be measured?
Figure S20a shows σJ as a function of t1 and t2, which gives that σJ is minimal when t1 = t2 = 0.87 tc.
That t1 = t2 might be surprising as it seems redundant to have both measurements at the same time;
however, note that measurement noise decreases with the square-root of the number of measurements,
and hence it can be intuitively explained that 0.87 tc is so much more informative than any other times
that one should get one noise-reduced measurement at 0.87 tc rather than two full-noise measurements
at two other times. A similar observation can be made when three more times are to be measured.
Figure S20b summarizes all the cases, and shows that although the optimal measuring time gradually
deviates from tc as the number of measurements increases, σJ at tc is close to the true minimal σJ .
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Since tc is close to optimal and easy to interpret, we therefore provide the following simple suggestion
for choosing the measuring times for A1 given some estimate of A1 and J : after measuring at a late
time, other measurements should be placed around A1/J .

Having understood the case of A1, we can apply a similar reasoning to the second metabolite A2

at a much more brisk pace. For the curve A∗2(t) (Eq. S7), we first assume A1 and A2 to be known,
and solve for a single time t that minimizes σJ : assuming A1 ≈ A2, we find that t = (A1 + A2)/J ,
the sum of tc for A1 and A2 (details in Section S4.5). This makes intuitive sense, given that A∗2(t)
is a mixture of two time-scales due to the actions of both A1 and A2 pools (Section S1). Simulation
results confirm that when the assumptions of known A1 and A2 and A1 ≈ A2 are relaxed and more
times are measured, t = (A1 +A2)/J is still close to optimal, like the case of A1 (Figure S21).

Applying the same reasoning to the k-th metabolite Ak gives similar results, and we therefore
provide the following general suggestion for a linear pathway of k metabolites given some estimate of
the pool sizes and flux: after measuring at a late time, other measurements should be placed around∑k

i=1Ai/J , k = 1, 2, . . .. A final remark comes from the observation that metabolites in a typical
metabolic network have strong separation of concentration scales. For the example of glycolysis, one
source reports that the most abundant metabolite (glucose) is 35 times more than the second most
abundant one [4]. This has an important implication: As can be seen from t =

∑k
i=1Ai/J , any

Ai greatly larger than others will dominate the numerator, effectively compressing all time-scales
into one (see also Section S1). Therefore, all metabolites downstream of a dominant one share the
dynamics and measuring times with it, and glucose being both the most abundant and first metabolite
in glycolysis suggests that the whole pathway has effectively only one time-scale, greatly simplifying
our understanding and practice for the system.

S4.1 Integrating Sensitivity Curves

Here we explain how sensitivity curves are calculated in SloppyCell (Methods). For a system of

ODEs
dA∗i
dt

= f(A∗,θ) (i = 1, ..., n), the parameter sensitivity of A∗i ,
∂A∗i
∂θα

is a function of time,

and has the following rate of change according to the chain rule:
d

dt

∂A∗i
∂θα

=
∂

∂θα

dA∗i
dt

=
∂f

∂θα
+∑

j

∂f

∂A∗j

∂A∗j
∂θα

, which constitutes another system of ODEs, now in mn dimension with
∂A∗i
∂θα

as the

variables. SloppyCell calculates the right-hand side of new system of ODEs through analytical

differentiation, and numerically integrates it to get
∂A∗i
∂θα

(t) [15].

Figure S18 shows an exemplary set of the sensitivity curves.
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Figure S18: Some example sensitivity curves. The network is a linear pathway of two metabolites
(Figure S4a) with parameters A1 = A2 = J = 1.
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S4.2 Nonconvexity of Minimizing σJ

Here we show an example of the nonconvexity of the minimization problem of σJ , hence the difficulty
of searching for the global minimum.

Figure S19 shows the landscape of σJ on a single t for the sensitivity curves in Figure S18 when
measuring times of 1, 2, 3 and 100 are already chosen. That it has two local minima shows its
nonconvexity; that one local minimum is around the mixed regime of A1 and another local minimum
around the constant regime reflects that measurements most informative of Ai’s are in the constant
regime and measurements most informative of J when Ai’s are known are in the mixed regime, and
one can either go for the mixed regime and J directly or the constant regime and Ai’s and hence J
indirectly.
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Figure S19: Nonconvex minimization landscape of σJ .

S4.3 The measuring times for A1

Figures S20a and S20b are generated for the first metabolite in a pathway with parameters A1 =
J = 1.
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Figure S20: (a) The minimization landscape of σJ on two measuring times given one measurement going to the
constant regime. Note that σJ is minimal when t1 and t2 are equal and smaller than 0.92 tc (see the main text).
(b) The minimization landscape of σJ or its cross sections for different cases of measuring times (when A1 is
unknown, one measurement goes to the constant regime to estimate it). Note that the optimal t shifts leftward
away from tc = 1 as A1 becomes unknown and as more measurements are made (see the main text).
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S4.4 Calculating t ≈ 0.92 tc

For A∗(t) = A(1 − e−
Jt
A ) with both A and J unknown and two measurements at t1 and t2, the

Jacobian D takes the following form:

D =

∂A
∗(t1)

∂A

∂A∗(t1)

∂J
∂A∗(t2)

∂A

∂A∗(t2)

∂J

 .

Plugging
∂A∗(t)
∂A

= 1 − e−JtA − e−JtA Jt
A

,
∂A∗(t)
∂J

= e−
Jt
A t and t2 = ∞ (one measurement in the

constant regime), D becomes

(
1− e−

Jt1
A − e−

Jt1
A

Jt1
A e−

Jt1
A t1

1 0

)
. Now following the formula in Meth-

ods, to get σJ as a function of t1 we need to get Σ and V in the singular value decomposition of
D (assuming constant noise, we do not have to normalize the entries of D by the associated noise
as the resulting σJ will only be shifted by a constant scale factor without affecting where it takes
the minimum). Knowing that entries in Σ, the singular values of D, are the square roots of the
eigenvalues of DTD, and that V consists of normalized eigenvectors of DTD, we perform eigende-
composition on DTD using Mathematica’s symbolic function Eigensystem: DTD = VΛV−1 (note
that Mathematica does not normalize V, but it does not matter for the same reason of not having
to normalize D by the noise). The second diagonal entry of VΛ−1VT gives σJ :

σJ(t1) =
J

A

(
Jt1
A
− 2e

Jt1
A + 2

)
+ 1, (S10)

which, when differentiated with respect to t1 and set to zero, gives:(
Jt

A1
+ 1

)
+ e

Jt
A1

((
Jt

A1

)2

− 2

)
− 2e

2Jt
A1

(
Jt

A1
− 1

)
= 0 (S11)

The transcendental equation has no analytical solution, and numerically we find t ≈ 0.92 tc.
Note: the units in Eq. S10 do not match because the second diagonal entry in D has the unit of

time but its value of 0 conceals it, and D was not normalized by the noise; the lack of matching in
unit does not, however, affect the numerical values which are of concern here.

S4.5 Deriving t = (A1 + A2)/J for A2

Given A∗2(t) = A2

(
1−

(
A1

A1 −A2
e
− Jt
A1 +

−A2

A1 −A2
e
− Jt
A2

))
(Eq. S7) and ssuming A1 and A2 as

known, we first try to solve for a formula of t at which σJ is minimal in the same way as in A1:

∂A∗2(t)
∂J

= − A2A1

A1 −A2
e
− Jt
A1

(
− t

A1

)
+

A2A2

A1 −A2
e
− Jt
A2

(
− t

A2

)
=

A2

A1 −A2
t
(
e
− Jt
A1 − e−

Jt
A2

)
∂

∂t

∂A∗2(t)
∂J

=
A2

A1 −A2

((
e
− Jt
A1 − e−

Jt
A2

)
+ t

(
e
− Jt
A1

(
− J

A1

)
− e−

Jt
A2

(
− J

A2

)))
= 0,

which simplifies to:

e
− Jt
A1 − e−

Jt
A2 =

Jt

A1
e
− Jt
A1 − Jt

A2
e
− Jt
A2 , (S12)

a transcendental equation in t without an analytical solution. We apply perturbation analysis to

it to get an approximate solution of t valid when A1 and A2 are close. Assuming
A1

A2
= 1 + ε and

ε� 1, we replaced A1 in Eq. S12 by (1 + ε)A2:
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e
− Jt

(1+ε)A2 − e−
Jt
A2 =

Jt

(1 + ε)A2
e
− Jt

(1+ε)A2 − Jt

A2
e
− Jt
A2 ,

which, when letting τ ≡ Jt/A2 = µ2t = t/t2c where t2c is the characteristic time-scale for A2,
becomes:

e
ετ
1+ε =

1− τ
1− τ

1+ε

, (S13)

an equation that specifies τ as a function of ε. To get an approximate analytical expression of
this function, we make use of the assumption that ε � 1 and approximate the left-hand side by
truncating its Taylor expansion at ε = 0 after a few terms:

e
ετ
1+ε = 1 +

ετ

1 + ε
+

1

2

(
ετ

1 + ε

)2

+ . . .

If we keep only the first two terms, Eq. S13 gives the following solution: τ = 2(1 + ε), equivalent
to t = 2A1/J ; if we keep the first three terms, however, Eq. S13 gives the following solution: τ =

(1 + ε)
√

4 + 12ε+ ε2 − 2− ε+ ε2

2ε
, which, after linearization, becomes τ = 2 + ε, equivalent to t =

(A1 +A2)/J . This agrees with analysis using perturbation series.

S4.6 Close-to-optimality of (A1 + A2)/J for A2
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Figure S21: The normalized difference between the analytical result of (A1 +A2)/J assuming ε� 1

and the computational results of optimal t:
(A1 +A2)/J − t

t
, using parameter value J = 1. (a)

Assume that A1 and A2 are known, and one measurement is to be made; the approximation is good
when A1 ≈ A2 as expected, and also when A1 � A2 or A1 � A2 as there is only one effective rate
in this case. (b) Assume that A1 and A2 are unknown, two measurements already made, one in the
constant regime and one at A1/J , and one more measurement is to be made.

S4.7 Dependence of Estimation Precision on Data Size and Time Selection

This section lists some results on an important practical matter: suppose we want to estimate a flux
J to some given precision, how many data points do we need and how should they be assigned on
different time-scales corresponding to different metabolites?
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Figure S22: Estimation precision of J as a function of data size and measuring times for linear
pathways. The height of bars corresponds to the coefficient of variation (CV) of parameter J , defined
as the estimation error divided by the estimated value. Each group of up to four bars corresponds to
a data size, that is the number of data points one can afford to collect. Within each group individual
bars correspond to linear pathways of one metabolite on the left, up to four metabolites on the right (a
linear pathway of, say, four metabolites has five different time-scales, one for each metabolite and one
for a late time in the constant regime, and requires at least five data points to cover them all, hence
the less-than-four bars in a group when the data size is small). The color division within each bar
corresponds to how to optimally assign the measuring times; using the example of a linear pathway
of four metabolites again, the height of each of the five colors corresponds to the relative measuring
density of that time-scale (for example, when ten data points can be afforded, they should be placed
on the five time-scales with a [4,1,1,1,3] scheme, the first time-scale measured four times, the constant
regime measured three times, etc.). We assume a 20% noise for each measurement, in accordance with
the typical experimental resolution of mass spectrometry, therefore placing more measurements on
important time-scales helps reduce the noise of the measurements at the time-scale (which typically
scales inversely with the square root of the number of measurements) and achieve overall better
estimation precision. The color scheme is chosen in such a way that blue always corresponds to the
first time-scale, and black always corresponds to the constant regime, which makes it more apparent
that the first and last time-scales are important and hence favored. Parameter values used for the
simulation: all metabolite pool sizes and the flux are set to one.

Figure S22 plots such a relationship using simulation results on a linear pathway, and conveys a
few key messages. First, the estimation of J is much better off when one measures more than one
metabolite in a pathway; in principle one can concentrate all the measurements on the first metabolite
of the pathway to estimate J (Figure 1 in the main text), but the figure says that it is better to
spread them out on several metabolites in the pathway, even though additional metabolites introduce
additional parameters (pool sizes); it also says that the gain decreases quickly with the number of
metabolites beyond two. Second, the estimation precision increases with the number of measurements
as expected. Third, the first and last time-scales, corresponding to the first metabolite and the
constant regime, are heavily favored in the time selection, meaning that they are more informative
than other time-scales in terms of estimating J and one should place most of the measurements
around them so that the dynamics around these time-scales can be measured with high precision;
intuitively, the first time-scale is important because it affects the dynamics of all metabolites in the
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pathway, and the last one is important because it allows us to estimate the scales (total concentration
or signal) of all metabolites at once. Numerically, the figure also tells us that in order to estimate J
within, say, 5%, one needs to make at least eight measurements on a few metabolites with a focus
on the first and last time-scales.
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