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Web Appendix A

Here the asymptotic distributions of the IPW estimators in the main paper
are derived using M-estimation theory as presented in Stefanski and Boos
(2002). In Section A.1 the propensity scores are assumed known. This as-
sumption is relaxed in Section A.2. Some additional comments regarding
variance estimation are given in Section A.3. All equation numbers refer to
equations within this appendix and do not refer to equations in the main
text. Throughout it is assumed the m groups constitute a random sample
such that the observable random variables (Y;, A;, B;, X;) for i = 1,...,m
are independent and identically distributed.

A.1 Known Propensity Score

First we derive the asymptotic distribution of ?ipw(a; a) when the propensity
scores are known. To more closely mimic the notation in Stefanski and Boos,
let 0,0 = Y% (a; ) as defined in the main text. That is,

O =m "> V" (a; )
where here and in the sequel >°; = >, and
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In contrast to the main text, here we denote the parameters of the propen-
sity score model by 8., 0, instead of ¢,, ¢, to better match the notation in



Stefanski and Boos. That is, 8, is a (p x 1) vector of regression coefficients
and 0 is the variance of the random effect b;. For now we are assuming 0, 0,
are known; in the next section below we will consider the setting where these
parameters are unknown and must be estimated from the data. Equivalently
we can express the IPW estimator as
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where

g3, Ay a,0) =) w(Ai _j;a)I(Ay = a)Yi;/n;.

Note the estimator QA(W is a solution (for #) to the estimating equation
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Therefore, by M-estimation theory, é,w SN 04, and \/m(é(w — 0,,4) con-
verges in distribution to N (0, X) where the variance matrix ¥ has the sand-
wich form
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and 6, , is the true parameter value defined by
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where I denptes the cumulative distribution function of Y;, A;, X;. In this
simple case 1,.4(Yi, Ai, X;,0) = —1, implying U(6,)=1 and therefore ¥ =
V(04.) which can be consistently estimated by the empirical estimator

1 .
Vm<Y> A, X) = E Z ¢a,a(Yia A, X5, ea,a)Q'

This implies, using the notation in the main paper, that the large sample
variance of Y?¥(qa; ) can be estimated by

ﬂ; > {Vi(a0) = V7(a;0)}

Note the form of this variance estimator intuitively makes sense because the
estimator (1) is essentially just a sample mean across groups.

Large sample variance estimators of the direct, indirect, total, and overall
IPW estimators can be derived analogously. In particular, note that the
direct effect estimator DE (c) is a solution to the estimating equation

Z@Dde;a(n, A, X;,0)=0

where
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implying the large sample variance of DE(«) can be estimated by
1 — — 2
—5 > {DEi(a) — DE(a)} ", (2)

i.e., by the between group sample variance of the direct effect estimates.
Likewise the indirect, total, and overall effect IPW estimators are solutions
to the estimating equations
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It follows that estimators of the same form as (2) can be used to estimate
the asymptotic variance of the indirect, total, and overall effect estimators.

A.2 Unknown Propensity Scores

As noted in the main text, in observational settings the true propensity
score will never be known and must be estimated. In this case, a vector of
estimating equations can be used to derive large sample variance estimators.
We first consider estimating the asymptotic variance of éa,a = }A”'p“’(a; a).
To begin, write the log likelihood for the mixed effects logit model of the
probability of participating in the study as >, {(B;, X;, 6., 05) where

X : 0 J J
j=1

and h”(b,,ex) = PI‘(BZ‘]‘ = ]_|ijij) = IOglt_l(ijex + bz) Estimates that
maximize this likelihood can be obtained using software for generalized linear
mixed effects models, such as the glmer function in the R package lmed
(Bates et al. 2011). Estimates 6,, 6, that maximize the log likelihood are
solutions to the score equations

wak(Bi,Xi,Ox,é’s) =0fork=1,...,p

Z¢S(Bi7 Xi) 0$7 QS) - 0

where ¥, (B;, X;,0,,05) = 0l(B;, X;,0,,05)/00., 0, denotes element k of
OI, and ws(Bia Xi; Ox, 93) = al(BZ, Xi, 917 03)/893

Therefore when the propensity scores are not assumed known but instead
are estimated from the data, the corresponding estimator 0 = (ém és, éma) is
a solution to the vector equation

Z TP(Om 0) =0



where O; = (Y;, A;, B;, X;) and
1/}11 (B’M Xi7 era 98)

$(0,,0) = |y, (B, X, 0,.0,) (3)
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By M-estimation theory it follows that 8 - 8, and \/m(6 — 6,) converges
in distribution to a multivariate normal distribution N (0, ¥) where

3 = U(6,)'V(6,){U(6,) ' }"

U(8y) = E{—4(0;,6,)}
V(6y) = E{(0;,60)9(0;,6,)"}
$(0;,0) = 91(0,,0) /06"

and the true parameter vector @y is defined as the solution to the equation

/¢(o, 8,)dF (o) = 0

where here F' denotes the cumulative distribution function of O;.
Replacing U(6y) and V (6) with empirical estimators yields the empirical
sandwich variance estimator

Y = Um(é)_lvm(é){Um(é)_l}T

where
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and 1
Vi) = — 3 {1(0:,0)%(0:,0)"}

7

The (p+2,p+2) element (i.e., bottom right) of X,, multiplied by m~! gives
the estimated asymptotic variance of QA,W = Yip“’(a; a). The estimated large
sample variance for the direct, indirect, total, and overall effect estimators
can be found in an analogous fashion by replacing the estimating equation
Va0 In (3) with the estimating equation corresponding to the effect of interest;
for instance, 14, would be used in place of v, , in order to estimate the
asymptotic variance of DE(a).



A.3 Variance Estimation

Note by definition 1(O;, @) equals the (p +2) x (p + 2) matrix

[ aq/)xl/agazl T 8¢x1/801’p awwl/aes awxl/aea,oc |
a¢xp/80x1 e 0%@/39@ aq/}xp/aes Gwz‘p/aea,a (4)
aws/aezl e aws/aezp aws/aes aws/aea,a

L awa,a/aeazl e awa,a/aezvp awa,a/aes awa,a/aea,a ]

where 1,, is shorthand for v, (B;, X, 0, 65) and similarly for ¢, and 1, 4.
The matrix (4) simplifies slightly to

[ 0y /00 - Otpy/ 00y, O0Yy1 /005 0 |
Oyp/ 001 -+ Oy /00y Py /005 O
00y )O0m - OO0, O, 00, O

L a¢a,a/89m Tt 3¢a,a/59:¢p 8¢a,a/895 —1 ]

Therefore, using block matrix notation, we can write U(6y) as
U21 1
where Uy is a (p+ 1) X (p + 1) matrix and Uy is a 1 X (p + 1) vector.
Similarly write V(6,) as
Vi V5
Vo Vo

where Vipisa (p+1) x (p+ 1) matrix, Vo; is a 1 x (p+ 1) vector, and Vo
is a scalar. Then )
Uy, 0
U, ! = o

(%) l ~U, Uy 1
Because U;; and V3 correspond to the score equations of the log likelihood
function of the mixed effects model, it follows that U;; = V3 (Stefanski and
Boos 2002). Therefore by straightforward linear algebra it follows that
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This suggests estimating the asymptotic variance of é,m by

1 N ~ N N ~
- {(Um —2Vy) VUL, + ‘/22} (5)

where Us; denotes the first p+1 terms in the bottom row of Um(é), and Vo,
V11, and Vi are the analogous submatrices (or elements) of V,,(6). Note (5)
has the advantage of not requiring computation of the entire matrix Um(é),
for which the upper left (p+1) x (p+ 1) submatrix entails second derivatives
of [(B;, X, 0,,05). For the results in the main text (i.e., the simulation study
and cholera vaccine trial analysis), the derivatives required for computing
(5) were evaluated numerically using the grad function in the numDeriv R
package (Gilbert 2012).
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Web Tables

Web Table 1
Results from simulation study described in Section 3 of the main paper.
Truth denotes the true value of the estimand; IPW denotes the average of
the IPW estimates over the 1000 simulated data sets; Bias = Truth—IPW
denotes the empirical bias; ESE denotes the empirical standard error; ASE
is the average of the estimated sandwich-type standard errors; and Cover is
the empirical coverage of Wald-type 95% confidence intervals

Estimand Truth IPW Bias ESE ASE Cover

DE(0.3) 0.152 0.152 0.000 0.013 0.014 97.4%
I1E£(0.3,0.45) 0.082 0.081 0.001 0.013 0.014 96.5%
(0.3,0.45) 0.196 0.195 0.001 0.015 0.017 96.7%
F(0.3,0.45) 0.088 0.087 0.001 0.011 0.012 96.1%
DE(0.45) 0.113 0.114 0.000 0.010 0.010 96.9%
IE(0.45,0.6) 0.067 0.064 0.003 0.011 0.011 95.5%
TFE(0.45,0.6) 0.151 0.150 0.001 0.012 0.013 96.2%
OF(0.45,0.6) 0.066 0.065 0.002 0.008 0.008 96.0%
DE(0.6) 0.084 0.086 -0.002 0.011 0.011 95.2%

I1E(0.3,0.6) 0.149 0.145 0.004 0.018 0.019 95.9%
TE(0.3,0.6) 0.233 0.231 0.002 0.016 0.017 96.2%
OF(0.3,0.6) 0.154 0.151 0.003 0.014 0.015 95.5%
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Web Figure 1: Naive estimates of (A) direct DFE(«), (B) indirect TE(a, o),
(C) total TE(«, '), and (D) overall OF(a, o) effects from the simulation
study. Solid lines represent the true effects, and dotted lines represent average
effect estimates using the naive estimator described in Section 3 of the main
paper. The histogram in (A) represents the distribution of vaccine coverage
observed from the simulated data.
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Web Figure 2: Outcome model-based estimates of (A) direct DE(«), (B)
indirect TE(a, o), (C) total TE(c, a'), and (D) overall OF(«, o) effects from
the simulation study. Solid lines represent the true effects, and dotted lines
represent average effect estimates using the outcome model-based estimators
described in Section 3. The histogram in (A) represents the distribution of
vaccine coverage observed from the simulated data.
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Web Figure 3: Misspecified IPW estimates of (A) direct DE(«a), (B) indirect
TE(a, ), (C) total TE(a, '), and (D) overall OE(«, o) effects from the
simulation study. Solid lines represent the true effects, and dashed lines rep-
resent average effect estimates using the IPW estimator with a misspecified
propensity score model wherein the river distance covariate (X;;2) was erro-
neously omitted. The histogram in (A) represents the distribution of vaccine
coverage observed from the simulated data.
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Web Figure 4: Sensitivity analysis of IPW estimates of (A) direct DE(«),
(B) indirect TE(0.40, '), (C) total TE(0.40, '), and (D) overall OE(0.40, o)
effects based on the cholera vaccine trial data. The solid line gives the es-
timates using the propensity score model that conditioned on age (linear
and quadratic) and distance to the nearest river (linear and quadratic) as in
Figures 3 and 4 of the main paper, and the gray regions around the effect
estimates represent approximate pointwise 95% confidence intervals based
on this propensity score model. The dashed lines correspond to IPW esti-
mates based on an alternative propensity score model that conditioned on age
(linear and quadratic), distance to the nearest river (linear and quadratic),
distance to the nearest treatment center (linear), and religion.
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