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Web Appendix 1.  Derivation of sCFR pyramidal estimators 

In the pyramid presented in main-text Figure 1, the assumption “medical attention always 

precedes hospitalization, which always precedes death” traduces mathematically as: 

D H M S⊂ ⊂ ⊂ . 

Under such conditions, the symptomatic case fatality ratio (sCFR), ( | )P D S , is equal to 

( | )P D H M S∩ ∩ . 

The latter decomposes into ( | ) ( | M ) (M | )P D H M S P H S P S∩ ∩ × ∩ × , thanks to Bayes’ 

theorem, and finally simplifies as:  

( | ) ( | M) (M | )sCFR P D H P H P S= × × . 

 

Web Appendix 2.  Derivation of the standard error of pyramidal 

estimators by the delta method 

The sCFR estimator provided by strategy k is ,
1

ˆ ˆ
kN

k i k
i

sCFR p
=

=∏ , where ,ˆ i kp  is obtained in  

a sample of ,i kn  cases at severity level i by counting how many eventually reach level  

1i + ( ,i kX ): ,, ,ˆ /  i k i k i kp X n= .  

Let 1, 2,, ,...,
k

T

k k k Np p pβ  =    and 1, 2,ˆ ˆ ˆ, ,...,
k

T

k k k NB p p p =   . As all ,ˆ i kp  are obtained on 

independent samples, we have the following variance-covariance matrix: 
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Let (.)h  be the product function: ,
1

( )
kN

i k
i

h p sCFRβ
=

= =∏  and ,
1

ˆˆ( )
kN

k i k k
i

h B p sCFR
=

= =∏ . The 

Delta method approximation gives ( )var ( ) ( ) .var( ). ( )T
k kh B h B hβ β≈ ∇ ∇ , i.e.: 
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Assuming all ,i kX  follow binomial distributions, it comes that ( ) ( ), , , ,ˆvar 1 /i k i k i k i kp p p n= − , 

so that ( ) 2

1 , ,

1 1ˆvar 1
kN

i i k i k

sCFR sCFR
n p=

 
≈ −  

 
∑ . The standard error (SE) being the square root 

of the variance, we obtain main-text equation 1: ( )
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k
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Web Appendix 3.  Optimizing resource allocation in a pyramidal approach  

We thereafter provide the demonstration for main-text equation 2 that gives the optimal 

allocation of resources between the surveillance levels of a pyramidal approach to sCFR 

estimation in the general case. Then we make derivations in two special cases. 

3.1 Demonstration of main-text equation 2 

Main text equation 2 stipulates that, with a fixed surveillance budget C, the minimum SE of a 

sCFR estimator is achieved for the following sample sizes: 

,
,*

,
,

,
1 ,

1 1

, 1,..,
1 1

k

i k
i k

i k k
Ni k

j k
j j k
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∑
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Demonstration: 

We seek 1, 2 ,
* * *

,
* , ,...,

kk k N

T

k kn n nθ  =    that minimizes ( )ˆSE ksCFR  under the fixed budget 

constraint , ,
1

kN

i k i k
i

c n C
=

=∑ . To that effect, we solve the following system of Nk equations: 
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 is obtained by 

replacing 
kNn  with 

1

, ,
1,

1 k

k

N

i k i k
iN k

C c n
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−

=

 
− 

 
∑  in main-text equation 1. System (1) reduces to the 

following linear system: 
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  −     


=


∑

∑

  (2) 

Solving it by Gaussian elimination, we obtain the local extremum *θ  with all *
,i kn  satisfying 

main-text equation 2. 

It can further been proved, by considering the values of 
( )2

,

ˆSE k

i k

sCFR

n

∂

∂
 at limits 0in →  and 

,/i i kn C c→  that *θ  is the global minimum of ( )ˆSE ksCFR . 

 

3.2 Optimal allocation of extra resources made available during an outbreak 

An interesting case is when extra resources (C’) are made available to enhance surveillance 

part way through an outbreak. We study thereafter which surveillance systems to enhance to 

best improve precision. To that effect, we consider a two-level estimation strategy, with 0
1n  

and 0
2n  the initial (and 1n′  and 2n′  the additional) numbers of cases collected at severity level 

1 and 2, respectively. We seek 1n′  and 2n′  that minimize ( )ˆSE sCFR  under the resource 

constraint 1 1 2 2C c n c n′ ′ ′= + . Let 0 0
1 1 2 2C C c n c n′= + + . We obtain the following solutions, which 

can be separated in 3 cases:  
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• if 
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=

 
− 

 

 
−  

 

≥

∑
, ( )ˆSE sCFR  is minimum for 1 0n′ =  and 2

2

Cn
c
′′ = . In other 

words, if the size of sample 1 size is above optimality given all available resources, 

the best thing to do is to focus on recruiting for sample 2. 
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−  
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≥

∑
, ( )ˆSE sCFR  is minimum for

 
1

1

Cn
c
′′ =  and 2 0n′ = . In other 

words, if the size of sample 2 is above optimality given all available resources, the 

best thing to do is to focus on recruiting for sample 2. 

• otherwise, ( )ˆSE sCFR  is minimum for 
T T* *

1 2 1 2; ;n n n n′ ′ ′ ′   =     with  

 0

2

1

*

1 1
, 1,2

1 1

i
i

i
i
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i

c
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c
n

c
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− 
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′

 
∑

. (3) 

In other words, in that last case, the additional resources are best used when split so as to 

reach optimal allocation of the total available resources (the ones invested so far plus the 

additional ones). Note that if 0 0
1 2,n n   are already optimally allocated, the optimal allocation 

for the additional resources C’ is simply *

1
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1 1

i
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i
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j
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 
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Numerical illustration: how to get the best out of extra resources 

Let us consider the estimator | |ˆ ˆD H H Sp p×  and assume that a community survey has already 

recorded 100 confirmed cases for which hospitalization status is known, and that hospital-

based surveillance is just starting to report cases. From this starting point, we study the gain 

in precision for each additional case recruited in the community or in hospital. Web Figure 1 

shows the standard error as a function of the number of additional cases recruited in the 

community (x-axis) and in the hospital (y-axis). The plain lines show the optimal recruitment 

strategy. In the mild severity scenario, this consists of recruiting only hospitalized cases until 

34 have been recruited and, from then on, to recruit three cases in the community (with 

known hospitalization status) for each case recruited in hospital (with known mortality 

outcome). Overall, the optimal resource allocation is 75% of cases being recruited at the 

community level and 25% at the hospital level (see main-text Table 3). In the severe 

pandemic scenario, the optimal recruitment strategy (having already detected 100 cases in the 

community) is to recruit only hospitalized cases until 97 of them have been accumulated and, 

from then on, recruit approximately equal numbers of cases in the community and hospitals. 
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Web Figure 1. Optimal recruitment strategy of additional cases, in a severe, intermediate and mild-severity influenza pandemic. 

We consider a two-level pyramidal estimator based on community and hospital surveillance ( | |ˆ ˆD H H Sp p× ), assuming that 100 symptomatic cases 

have already been recruited in the community, and that new resources are made available to recruit more cases, both in the hospital and the 

community. Each new recruitment — in the community (x-axis) or in hospital (y-axis) — reduces the standard error (SE) of the sCFR estimator, 

which varies from high (black) to low (light gray). The plain line shows the recruitment strategy that best reduces the standard error for each 

recruited case; e.g. in the 2009-like mild scenario, this consists in recruiting first in hospital until reached 34 hospitalized cases, then recruiting 

about 3 cases in the community for each reported hospitalized case. This is traduced graphically by the gray line intercepting the y-axis at y = 34 

and having a slope of 1/3. 
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3.3 Optimal resource allocation given fixed surveillance systems 

It may sometimes be the case that some surveillance systems (e.g. general practitioner 

sentinel networks) are already in place and have collected samples whose size cannot readily 

be changed during an emerging infectious disease outbreak. If those system use an amount 

C′  of the resources, the question is then how to optimally allocate the remaining resources 

(C C C′′ ′= − ) to levels that are not covered by existing surveillance schemes. We show 

hereafter that this is obtained by optimizing the sample sizes of those ad-hoc surveillance 

systems/surveys given resources C’’ with a formula similar to main-text equation 2, 

regardless of the sample sizes of the surveillance systems already in place. 

Demonstration: 

Let assume that the sample sizes of levels 1 to j, 
T

1, 2, ,; ;...;k k j kn n n   , are fixed. We 

seek
T* * * *

1, 2, ,; ;...;
kj k j k N kn n nθ + + =    that minimizes ( )ˆSE ksCFR  while respecting the constraint 

, ,
1

kN

i k i k
i j

n c C
= +

′′=∑ . To that effect we solve analytically the following system of kN j−  

equations: 
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ˆSE
0,  1.. 1
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k
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i k
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i k i k
i j

sCFR
i j N

n

c n C
= +

∂
 = ∀ = + −

∂

 ′′=


∑
 (4) 

Where ( )
1

,
1

1 , , ,
, ,

1

1 1 1ˆSE 1 1
k

k

k

k

N
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k N
i i k i k N k

i k i k
i j

c
sCFR sCFR

n p pC n c

−

−
=

= +

  
≈ − + −        ′′ −

∑
∑

 is obtained by 

replacing ,kN kn  with 
1

, ,
1,

1 k

k

N

i k i k
i jN k

C c n
c

−

= +

 
′′ − 

 
∑  in equation 1 of the main document. The system 

reduces to the following linear system: 
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, ,
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, , , ,
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≠
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     −      ′′+ + ≈ = + −  
  −     
 ′′=


∑

∑

  

System (4) is similar to system (1) and can be solved in a similar manner. Thus, the sample 

sizes of studies j+1 to Nk that minimize the standard error of the sCFR estimator are: 

 
*
,

,
T ,* * * *

1, 2, ,
,

,
1 ,

1 1

; ;...;  with 
1 1

k
k

i k
i k

j k j k N k
Ni k

l k
l l k

i k

j

c
pCn n n

c
c

p

nθ + +

= +

 
−  ′′   = ≈   
−  

 
∑

 (5) 
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Web Appendix 4.  Rules of thumb for the comparison of estimators 

The standard error ratio of two surveillance strategies with same budget C and optimal 

resource allocation between levels is independent of C: 

 
( )
( )

,*
1 ,

*

,
1 ,

1 1ˆSE
ˆSE 1 1

k

l

N

i k
ik i k

N
l

i l
i i l

c
sCFR p

sCFR
c

p

=

=

 
−  

 ≈
 

−  
 

∑

∑
 (6) 

We aim to find 1) when surveillance of a supplementary level improves precision and 2) how 

to best choose this level. For mathematical tractability, we will suppose equal recruitment 

costs in all levels of all strategies. 

Consider an estimator k and an estimator l, built on estimator k by inserting an intermediate 

level. Specifically, the equality ,j k p pp ′ ′′= × is used to replace ,ˆ j kp  by ˆ ˆp p′ ′′×  in estimator l, 

all other progression probabilities being the same than in estimator k: ,
1

ˆ ˆ
kN

k i k
i

sCFR p
=

=∏  and 

,
1

ˆ ˆ ˆ ˆ
kN

i k
i
i j

lsCFR p p p
=
≠

′ ′′= × ×∏ .  

 

4.1 When does a supplementary level improve precision? 

Specifically: When does ( ) ( )* *ˆ ˆSE SEl ksCFR sCFR<  for the same budget C?  

Mathematical derivations: 

As we assume all recruitment cost per case (c.,.) equal, we use main-text equation 6 to define 

standard errors: 

( ) ( )* *

1 1, ,

1 1ˆ ˆSE 1 and SE 1
l kN N

l k
i ii l i k

sCFR sCFRsCFR sCF
n pn

R
p= =

≈ − ≈ −∑ ∑  
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Thus, 

( ) ( )* *

1 1, ,

1 1, , ,

1 1ˆ ˆSE SE 1 1

1 1 1 1 11 1 1 1 1

l

k k

kN N

l k
i ii l i k

N N

i ii k i k j k
i j i j

sCFR sCFR
p p

p p p p p

= =

= =
≠ ≠

< ⇔ − < −

⇔ − + − + − < − + −
′ ′′

∑ ∑

∑ ∑
 

,

1 1 11 1 1
j kp p p

− + − < −
′ ′′

⇔   

Taking each expression to the square, remembering that ,j k p pp ′ ′′= × , and putting 

everything on the left hand-side, we obtain:  

 ( ) ( )* *

, , , ,

1 1 1 1ˆ ˆSE SE 1 2 1 0l k
j k j k j k j k

p psCFR sCFR
p p p p p p

 ′ ′
< ⇔ − − − + + − − + < ′ ′  

  (7) 

Letting 
, ,

1 11
j k j k

px
p p p

′
= − − +

′
, we obtain: 

  

( ) ( )* *

, ,

, ,

ˆ ˆSE SE 2 0

2 0

2
4

1 1 1 4

1 1 3 0

l k

j k j k

j k j k

sCFR sCFR x x

x

x
x

p
p p p

p
p p p

< ⇔ − + <

⇔ − + <

⇔ >
⇔ >

′
⇔ − − + >

′

′
⇔ − − − >

′

   

Multiplying each side of the last inequality by p’, we obtain 

 ( ) ( )
2

* *

, ,

1ˆ ˆSE SE 3 1 0l k
j k j k

psCFR sCFR p
p p

 ′
′< ⇔ − + + − >  

 
.  (8) 

Solving equation 8 in p’, it follows that: 

1. If .
1 ;1
9j kp  ∈  

, there is no real root for p’, and ( ) ( )* *ˆ ˆSE SEl ksCFR sCFR>  whatever 

{ },  p p′ ′′ : this means that the splitting decreases precision. 
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2. If . 1/ 9j kp = , ( ) ( )* *ˆ ˆSE SEl ksCFR sCFR=  if and only if 1
3

p p′ ′′= = , 

otherwise ( ) ( )* *ˆ ˆSE SEl ksCFR sCFR>  : the splitting decreases precision (or do not 

change it). 

3. If ] [. 0;1/ 9j kp ∈ , there are three cases: 

a. If 
2 2

, , , , , ,1 3 1 10 9 1 3 1 10 9
;

2 2
j k j k j k j k j k j kp p p p p p

p
 − − − + − + − +
 
 
 

′∈  

then ( ) ( )* *ˆ ˆSE SEl ksCFR sCFR< . 

b. If 
2 2

, , , , , ,1 3 1 10 9 1 3 1 10 9
0; ;1

2 2
j k j k j k j k j k j kp p p p

p
p p   − − − + − + − +

   ∪
 

′


   
∈


 

then ( ) ( )* *ˆ ˆSE SEl ksCFR sCFR> . 

c. If 
2

, , ,1 3 1 10 9
2

j k j k j kp p p
p

− +
=′

− −
 or 

2
, , ,1 3 1 10 9

2
j k j k j kp p p

p
− +

=′
+ −

 

then ( ) ( )* *ˆ ˆSE SEl ksCFR sCFR= . 

This is illustrated in Web Figure 2, with sCFR p p′ ′′= × : the standard error of the optimized 

two-level estimator is compared with that of the single-level estimator. The values { },p p′ ′′  

for which the single-level estimator (resp. the two-level estimator) is the most precise are 

highlighted in orange-red (resp. blue). 
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Web Figure 2. Ratio of the standard error of a two-level estimator of the symptomatic case 

fatality ratio ( | |ˆ ˆD H H Sp p× ) to a single-level estimator ( |ˆ D Sp ), for various |H Sp  and |D Hp   

( | | |D S H S D Hp p p= × ). The pairs { }| |,H S D Hp p  for which the two-level estimator is more precise 

than the single-level one are in blue (darker blue for better precision). The ones for which the 

single-level estimator is more precise are in orange-red. Black plain lines: examples of 

{ }| |,H S D Hp p  pairs yielding a same sCFR: 0.00025 (as in 2009), or 1/9. Dashed line: 

| |H S D Hp p sCFR= = . 
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4.2 Which intermediate level yields the most precise estimator? 

We seek p′  and p′′  that minimize ( )*ˆSE lsCFR  under the constraint: ,i kp p p′ ′′= × .  

We have: ( )*

1 1, , ,

1 1 1 1ˆSE 1 1
/

1 1
l kN N

l
i ii l i k j k

i j

sCFR sCFRsCFR
p p p p pn n= =

≠

 
 ≈ − ≈ − + − + − ′ ′
  

∑ ∑ . 

Thus, 

( )*

2
,

,

ˆSE 1 1 1 1
12 1 2 1

l

j k

j k

sCFR sCFR
p p pn p

p p

 
 ∂    ≈ − +     ′ ′∂ ′    − −

′  

 

( )*

2
,

,

ˆSE 1 10
12 1 2 1

l

j k
j k

sCFR

p pp p
p p

∂
≈ ⇔ ≈

′∂ ′
′ − −

′

 

( )*

4 2
,

,

ˆSE 1 10
1 1 1

l

j k
j k

sCFR

p pp pp p

∂
≈ ⇔ ≈

′∂    ′′ − −    ′   

 

 

( )*
4 3 2

, ,

ˆSE
0 0

l
i k i k

sCFR
p p p p p

p

∂
′ ′ ′≈ ⇔ − + − + ≈

′∂
  (9) 

Solving equation 9: 

• If , 0.25i kp ≥ , polynomial (9) has 2 roots in ℜ  : ,i kp p′ =  and ,i kp p′ = − . Only the 

first belongs to ] [0;1 ; it is a local maximum for ( )*ˆSE lsCFR . Minima are obtained for 

,i kp p′ →  and 1p′ → . 
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• If , 0.25i kp < , there are 4 roots: ,i kp p′ = , ,1 1 4
2

i kp
p

− −
′ = , ,1 1 4

2
i kp

p
+ −

′ =  and 

,i kp p′ = − , but only ,i kp p′ = is a local minimum for ( )*ˆSE lsCFR on ] [0;1 .  

We search under which condition ,i kp p′ =
 
is a global minimum i.e. which conditions make 

( ) ( )
1,,

,

* *ˆ ˆSE lim SE
pj k
or
p pi k

l l
p p

sCFR sCFR
′→

′→

′=
<  true. It comes that ,i kp p′ =

 
is a global minimum if 

and only if , 1/ 9i kp < .  

 

In conclusion, Web Figure 3 presents a decision tree that summarizes when to insert a 

supplementary surveillance level and how to best choose it. 
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Web Figure 3. Decision tree to find the most precise estimator between ,
1

ˆ ˆ
kN

k i k
i

sCFR p
=

=∏  and 

,
1

ˆ ˆ
kN

l i k
i
i j

sCFR p p p
=
≠

′ ′′= × ×∏  (resources optimally allocated within both). In the first estimation 

strategy, the progression probability pj,k is estimated in a single population; in the second, it is 

obtained by multiplying the estimates of progression probabilities p′  and p′′ . 

 

 

†[ ]
2 2

, , , , , ,
min max

1 3 1 10 9 1 3 1 10 9
; ;

2 2
j k j k j k j k j k j kp p p p p p

p p
 − − − + − + − +
 =
 
 
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Web Appendix 5.  Optimizing resource allocation in the presence of 

uncertainty  

We study the impact of initial uncertainty about severity parameters on resource allocation, 

and its consequence on the precision of sCFR estimators. Indeed, at the start of an outbreak, 

the probabilities ,i kp  are unknown and informed guesses, denoted ,i kp , supported by the 

literature or by preliminary surveys can be used to optimize resource allocation and calculate 

the expected precision of sCFR estimators. Thus, at the beginning of the outbreak the 

expected value of the sCFR is ,
1

kN

i k
i

sCFR p
=

=∏   and the expected precision of estimator k with 

sample sizes ,i kn  is 

 ( )
1 , ,

1 1ˆ 1SE
kN

k
i i k i k

sCFR sCFR
n p=

 
−  

 
≈ ∑


. (10) 

“Optimal” sample sizes (denoted ,i kn ) based on the preliminary ,i kp  with budget C are 

 
,

,
,

,

,
1 ,

1 1

, 1,..,
1 1

k

i k
i k

i k k
Ni k

j k
j j k

c
pCn i N

c
c

p=

 
−  

 ≈ ∀ =
 

−  
 

∑






, (11) 

and the expected standard error with “optimal” sample sizes ,i kn  is
 

 ,
1 ,

1 1
kN

i k
i i k

sCFR c
pC =

 
−  

 
∑




. (12) 

However, given the true ,i kp , the standard error with sample sizes ,i kn will be in reality: 

 ( )
1 , ,

1S 1E ˆ 1
kN

k
i i k i k

sCFR sCFR
n p=

 
−≈  

 
∑ 

 . (13) 
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In Web Figure 4, we plot the 95% prediction interval (which is related to the standard error in 

equation 13) of the two-level estimators, when one probability of progression is uncertain at 

pandemic start. Prediction intervals increase as the preliminary estimate of the uncertain 

progression probability moves away from the true value, indicating lower precision. 

However, this increase is quite flat, indicating good robustness of the precision of sCFR 

estimators to initial uncertainty around severity parameters.  

Web Figure 5 and Web Figure 6 reproduce main-text Figure 6 for the 1918- and 1957-like 

pandemic scenarios, respectively.
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Web Figure 4. Precision of two estimators of the symptomatic case fatality ratio (sCFR) 

when optimal resource allocation is based on preliminary values. 

We consider estimators | |ˆ ˆD M M Sp p×  (column A) and | |ˆ ˆD H H Sp p×  (column B), when pM|S and 

pH|S, respectively, are uncertain. We make the preliminary value of pM|S (resp. pH|S) vary in the 

top x-axis (log scale); to each preliminary value corresponds a calculated optimal size for the 

community symptomatic case sample (bottom x-axis) and a precision of the sCFR estimator 

(given by its 95% prediction interval, in y-axis). True sCFRs are indicated by horizontal plain 

lines. As preliminary pM|S (resp. pH|S) is closer to its true value (dashed vertical line), the 

prediction interval narrows, indicating better precision. 
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Web Figure 5. Expected standard error of symptomatic case fatality ratio (sCFR) estimators 

in the presence of uncertainty around severity parameters, in a severe 1918-like pandemic 

scenario. 

A recruitment capacity of 10,000 cases is assumed. The parameters pM|S, pH|M and pD|H (the 

probabilities of medical attention upon symptoms, hospitalization upon medical attention and 

death upon hospitalization, respectively) are supposed uncertain at pandemic start. The true 

values of pM|S, pH|M, and pD|H are 0.4, 0.35, and 0.1457, respectively, with uncertainty bounds 

0.2‒0.6, 0.15‒0.35, and 0.05‒0.3, respectively. The minimal standard error of each sCFR 

estimator is calculated for the true pandemic scenario and for the eight anticipation scenarios 

constructed by combining the uncertainty bounds (minimal standard errors are obtained by 

optimally allocating the 10,000 recruited cases between surveillance levels). 
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Web Figure 6. Expected standard error of symptomatic case fatality ratio (sCFR) estimators 

in the presence of uncertainty around severity parameters, in a severe 1918-like pandemic 

scenario. 

A recruitment capacity of 10,000 cases is assumed. The parameters pM|S, pH|M and pD|H (the 

probabilities of medical attention upon symptoms, hospitalization upon medical attention and 

death upon hospitalization, respectively) are supposed uncertain at pandemic start. The true 

values of pM|S, pH|M, and pD|H are 0.2, 0.1, and 0.1, respectively, with uncertainty bounds 

0.05‒0.2, 0.01‒0.1, and 0.05‒0.2, respectively. The minimal standard error of each sCFR 

estimator is calculated for the true pandemic scenario and for the eight anticipation scenarios 

constructed by combining the uncertainty bounds (minimal standard errors are obtained by 

optimally allocating the 10,000 recruited cases between surveillance levels). 
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Web Appendix 6.  Numerical examples with different sets of costs 

We consider thereafter two new sets of costs associated with the direct measure of 

progression probabilities (pD|S, pM|S, pH|M, pD|H, pD|M, pH|S) by ad-hoc surveillance systems or 

surveys. The progression probabilities remain the same as in main-text Table 1. 

In the first set of costs (Web Table 1), we assume that, for each pandemic scenario, the 

highest cost ($5/case) is for recruiting symptomatic cases in the population and following 

them until definitive information on death (i.e. measuring directly pD|S on a case series). 

Following symptomatic cases until one obtains definitive information about a general 

practitioner (GP) visit (pM|S) or hospitalization (pH|S) costs $3/case. Obtaining from GPs the 

hospitalization status of symptomatic cases seen in consultation costs $2/case; obtaining 

death status costs $3/case. Finally, obtaining from hospitals information on death status only 

costs $1/hospitalized case. 

Reversely, in the second set of costs (Web Table 2), we assume that obtaining any 

information on symptomatic cases from the population is cheap ($1 for obtaining death, 

hospitalization or GP visit status). Obtaining case data from GPs (hospitalization or death 

status) costs $2/case. Obtaining information on death from hospitals costs $3/case. 
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Web Table 1. First set of costs (in dollars ($) per recruited case) in different surveillance 

systems set for estimating different probabilities of progression.  

Scenario pD|S = sCFR pM|S pH|M pD|H pD|M pH|S 
Severe (1918-like) 5 3 2 1 3 3 
Intermediate (1957-like) 5 3 2 1 3 3 
Mild (2009-like) 5 3 2 1 3 3 

 

 

 

Web Table 2. Second set of costs (in dollars ($) per recruited case) in different surveillance 

systems set for estimating different probabilities of progression. 

Scenario pD|S = sCFR pM|S pH|M pD|H pD|M pH|S 
Severe (1918-like) 1 1 2 3 2 1 
Intermediate (1957-like) 1 1 2 3 2 1 
Mild (2009-like) 1 1 2 3 2 1 
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Web Appendix 7.  Precision of pyramidal estimators when costs are 

different between surveillance levels 

The standard error of the four sCFR estimators presented in main-text Figure 1 is calculated 

using the costs presented in Web Table 1 and Web Table 2, assuming a fixed budget of 

$10,000 for each estimation strategy. The optimal allocation of resources for each estimator 

is given by main-text equation 2. Standard errors are obtained with main-text equation 4.  

Results 

Using costs from Web Table 1, the precision gained by using pyramidal over single-level 

estimators is emphasized compared with the numerical example in the main text, which 

assumed equal costs at all surveillance levels (Web Table 3). Indeed, in Web Table 1, we 

stipulate that recruiting and following symptomatic cases from symptoms to death is 

expensive, which might well be the case in ad-hoc outbreak investigation survey. As a 

consequence, the three-level estimator is always the most precise, even in the 1918-like 

scenario (contrarily to what was observed when all costs were equal). In the 2009-like 

scenario, the standard error is reduced by as much as 87% compared with 78% when we used 

equal recruitment costs (see main-text Figure 3). 

On the contrary, using costs from Web Table 2, the precision gained from using pyramidal 

estimators is decreased compared with the numerical example in the main text (Web Table 

4). Indeed, in Web Table 2, recruiting and following symptomatic cases from the general 

population is cheap compared with general practitioner-based and hospital-based surveillance 

systems. In particular, in the 1918-like scenario, the single-level estimator is more precise 

than the two-level estimator based on general practitioners and the three-level estimator.  
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Web Table 3. Minimal Standard Error (SE) of sCFR Estimators, Based on a $10,000 Budget, When Recruitment Costs Are Those Provided in 

Web Table 1.a 

Estimator Level Event 

Severe 1918-Like Pandemic 
sCFR = 2.04 × 10-2 

Intermediate 1957-Like Pandemic 
sCFR = 2 × 10-3 

Mild 2009-Like Pandemic 
sCFR = 2.5 × 10-4 

Optimal 
Sample 
Size, no. 

Expected 
No. of 
Events 

SE (×10-3) 
Optimal 
Sample 
Size, no. 

Expected 
No. of 
Events 

SE (×10-4) 
Optimal 
Sample 
Size, no. 

Expected 
No. of 
Events 

SE (×10-5) 

 |ˆ D Sp
 S Death 2,000 41 3.16 2,000 4 9.99 2,000 0.5 35.35 

 | |ˆ ˆD M M Sp p×  S 
Medical 

attention 
737 295 

1.96 
558 112 

4.14 
117 41 

16.79 
M Death 2,596 132 2,775 28 3,216 2 

 | |ˆ ˆD H H Sp p×  S Hospitalization 2,131 298 
1.37 

2,672 53 
3.02 

2,786 15 
6.97 

H Death 3,606 525 1,984 198 1,643 75 

 | | |ˆ ˆ ˆD H H M M Sp p p× ×  
S 

Medical 
attention 

1,093 437 

1.32 

1,078 216 

2.14 

434 152 

4.53 M Hospitalization 1,489 521 1,981 198 3,087 48 

H Death 3,742 545 2,802 280 2,525 115 
a The optimal sample size at each surveillance level is obtained with main-text equation 2. Expected numbers of events are calculated as sample 

size × pi|j. 

sCFR: symptomatic case fatality ratio; S: symptomatic cases; M: medically attended cases; H: hospitalized cases. 
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Web Table 4. Minimal Standard Error (SE) of sCFR Estimators, Based on a $10,000 Budget, When Recruitment Costs Are Those Provided in 

Web Table 2a 

Estimator Level Event 

Severe 1918-Like Pandemic 
sCFR = 2.04 × 10-2 

Intermediate 1957-Like Pandemic 
sCFR = 2 × 10-3 

Mild 2009-Like Pandemic 
sCFR = 2.5 × 10-4 

Optimal 
Sample 
Size, no. 

Expected 
No. of 
Events 

SE (×10-3) 
Optimal 
Sample 
Size, no. 

Expected 
No. of 
Events 

SE (×10-4) 
Optimal 
Sample 
Size, no. 

Expected 
No. of 
Events 

SE (×10-5) 

 |ˆ D Sp
 S Death 10,000 204 1.41 10,000 20 4.47 10,000 2 15.81 

 | |ˆ ˆD M M Sp p×  S 
Medical 

attention 
1,672 669 

1.49 
1,244 249 

3.21 
251 88 

13.56 
M Death 4,164 212 4,378 44 4,874 3 

 | |ˆ ˆD H H Sp p×  S Hospitalization 3,715 520 
1.36 

5,740 115 
2.44 

6,289 35 
5.35 

H Death 2,095 305 1,420 142 1,237 56 

 | | |ˆ ˆ ˆD H H M M Sp p p× ×  
S 

Medical 
attention 

1,667 667 

1.5 

1,748 350 

2.29 

665 233 

5.12 M Hospitalization 1,312 459 1,854 185 2,732 43 

H Death 1,903 277 1,514 151 1,290 59 
 

a The optimal sample size at each surveillance level is obtained with main-text equation 2. Expected numbers of events are calculated as sample 

size × pi|j. 

sCFR: symptomatic case fatality ratio; S: symptomatic cases; M: medically attended cases; H: hospitalized cases. 
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Web Appendix 8.  Necessary budget when costs are different between 

surveillance levels 

We now use the sets of costs provided in Web Table 1 and Web Table 2 to calculate the 

necessary budget to obtain a predefined precision level. For example, we aim to obtain a 

coefficient of variation of 0.5, for each estimator in each pandemic scenario. The absolute 

results are presented below in Web Table 5 and Web Table 6.  

In the 2009-like pandemic scenario, the necessary budget can be reduced by 98% (resp. 89%) 

by using the three-level estimator instead of the single-level one, when costs are those 

specified in Web Table 1 (resp. Web Table 2). It was 95% when all surveillance costs were 

equal.  

In the 1918-like scenario using the three-level estimator allows reducing the necessary budget 

by 62% when costs are those specified in Web Table 1, but increases them by 12% when 

costs are those specified in Web Table 2. It was a 36% budget decrease when all surveillance 

costs were equal. 
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Web Table 5. Necessary Budget to Obtain a Coefficient of Variation of 0.5 for sCFR Estimators, When Recruitment Costs Are Those Provided 

in Web Table 1a 

Estimator Level Event 

Severe 1918-Like Pandemic 
sCFR = 2.04 × 10-2 

Intermediate 1957-Like Pandemic 
sCFR = 2 × 10-3 

Mild 2009-Like Pandemic 
sCFR = 2.5 × 10-4 

Optimal 
Sample 
Size, no. 

Expected 
No. of 
Events 

Necessary 
Budget 

Optimal 
Sample 
Size, no. 

Expected 
No. of 
Events 

Necessary 
Budget 

Optimal 
Sample 
Size, no. 

Expected 
No. of 
Events 

Necessary 
Budget 

 |ˆ D Sp
 S Death 192 4 960 1,996 4 9,980 15,996 4 79,980 

 | |ˆ ˆD M M Sp p×  
S 

Medical 
attention 

27 11 
368 

96 19 
1,714 

211 74 
18,034 

M Death 96 5 476 5 5,800 4 

 | |ˆ ˆD H H Sp p×  S Hospitalization 38 5 
180 

244 5 
915 

867 5 
3,113 

H Death 65 9 181 18 512 23 

 | | |ˆ ˆ ˆD H H M M Sp p p× ×  
S 

Medical 
attention 

18 7 

167 

49 10 

459 

57 20 

1,316 M Hospitalization 25 9 91 9 406 6 

H Death 63 9 128 13 332 15 
a Corresponding standard errors are 1.02 × 10-2, 1.00 × 10-3, and 1.25 × 10-4, for the severe, intermediate and mild scenario, respectively. Optimal 

sample sizes are obtained by optimally allocating the total number of recruited cases (cumulated sample size) between surveillance levels using 

main-text equation 2. Expected numbers of events are calculated as sample size × pi|j. 

sCFR: symptomatic case fatality ratio; S: symptomatic cases; M: medically attended cases; H: hospitalized cases. 
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Web Table 6. Necessary Budget to Obtain a Coefficient of Variation of 0.5 for sCFR Estimators, When Recruitment Costs Are Those Provided 

in Web Table 2. a 

Estimator Level Event 

Severe 1918-Like Pandemic 
sCFR = 2.04 × 10-2 

Intermediate 1957-Like Pandemic 
sCFR = 2 × 10-3 

Mild 2009-Like Pandemic 
sCFR = 2.5 × 10-4 

Optimal 
Sample 
Size, no. 

Expected 
No. of 
Events 

Necessary 
Budget 

Optimal 
Sample 
Size, no. 

Expected 
No. of 
Events 

Necessary 
Budget 

Optimal 
Sample 
Size, no. 

Expected 
No. of 
Events 

Necessary 
Budget 

 |ˆ D Sp
 S Death 192 4 192 1,996 4 1,996 15,996 4 15,996 

 | |ˆ ˆD M M Sp p×  S 
Medical 

attention 
36 14 

215 
129 26 

1,033 
296 104 

11,776 
M Death 89 5 452 5 5,740 4 

 | |ˆ ˆD H H Sp p×  S Hospitalization 66 9 
178 

341 7 
595 

1,152 6 
1,832 

H Death 37 5 84 8 227 10 

 | | |ˆ ˆ ˆD H H M M Sp p p× ×  
S 

Medical 
attention 

36 14 

216 

92 18 

523 

112 39 

1,680 M Hospitalization 28 10 97 10 459 7 

H Death 41 6 79 8 217 10 
a Corresponding standard errors are 1.02 × 10-2, 1.00 × 10-3, and 1.25 × 10-4, for the severe, intermediate and mild scenario, respectively. Optimal 

sample sizes are obtained by optimally allocating the total number of recruited cases (cumulated sample size) between surveillance levels using 

main-text equation 2. Expected numbers of events are calculated as sample size × pi|j. 
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