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Supplementary figures

Figure S1. Hells Canyon population sizes over the duration of the study. Populations do not follow 

consistent trajectories through time, thus we treated disease severity in years following pathogen 

introduction as independent.



Figure S2. Distribution of number of ewe-subpopulations (“components”) observed for each 

population included in this study. 



Figure S3. Number of radiocollared ewes by number of ewe-subpopulations (“components”) detected 

in a given population-year.



Figure S4. Variance components when ewe-group was excluded from the model. Note that variance 

previously attributed to ewe-group is now attributed to population-year (“Year”) in diseased years. 

Figure S5. Palla's temporal autocorrelation estimates for summer ewe-subpopulation membership. 

High autocorrelation corresponds to high overlap in group membership. The x-axis reflects the time 

lapse between the two years for which group membership is being compared. Points represent all pair-
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wise lags between years included in this analysis. We show separate lines for autocorrelation functions 

in each of our four study populations that experienced lamb disease. The grey box indicates autocorre-

lation between consecutive years (i.e., “lag-one autocorrelation”). 

Supplementary text

1 Ewe social network construction and structures

Ewes were located at least biweekly on the ground or from a fixed wing aircraft, and locations 

were usually accompanied by visual observation. The median time lag between locations for an 

individual was six days in the cohorts used in this analysis (electronic supplementary material Table 

S1). We defined “summer” as the period from May 01 to September 30. This window ranges from birth

to weaning, and is the interval during which most disease-induced lamb mortality is detected [1]. We 

constructed a social contact network of radiocollared individuals for each summer by considering each 

marked ewe to be a node, and allowing an edge to exist between every pair of marked individuals. We  

calculated pairwise association indices between all marked animals in the population, and used these 

association indices as edgeweights linking pairs of marked ewes. This had the consequence of 

removing edges between pairs of animals that were never observed together. We then used these 

networks to identify the ewe-subpopulation (Fig. 1C) to which each radiocollared ewe belonged. We 

defined ewe-subpopulations to be sets of individuals observed at least once together, but never 

observed with individuals from other subpopulations (i.e., network “components”; Fig. 1C). This 

definition does not require ewes within a subpopulation to be located with all other ewes in their 

subpopulation, rather that they be located with at least one other member of their subpopulation at least 

once. Our weekly sampling intensity allows for the presence of some undetected bridges linking ewe-

subpopulations to one another. However, the fact that these bridges were never observed suggests that 

they were subject to limited activity, lowering their potential impact on disease transmission.  The 

entities that we refer to as “ewe-subpopulations” in the main body of the text are in fact K2-clusters 



(i.e., open triplets) in each population-summer's ewe social networks. 

2 Bootstraps to test for relationship between number of collars and network structure

We used bootstrap-based approach to test for relationships between number of radiocollared 

individuals and network structure. Bootstrap-based approaches were chosen since they do not make 

assumptions about the underlying distributional form of the data, and are therefore robust to departures 

from normality. To determine whether the number of ewe-subpopulations differed significantly 

between healthy and diseased years, we sampled with replacement from the full distribution of 

observed number of components across all population-years. Resampled values were bound to the 

population-years recorded in the order observed in empirical the dataset, to generate resampled blocks 

of numbers of components for each population. In each resampled block, we recorded the resampled 

number of components and the empirically observed population disease status. This comprised a  

resampled dataset. We then calculated the (resampled) mean number of observed components for each 

population, and calculated the sum of squared error residuals and sum of squared treatment (e.g., 

disease status) effects in each bootstrapped dataset. In this way, we created a bootstrapped distribution 

of sum of squared treatment effects divided by the sum of squared residuals. We replicated this process 

1000 times to generate a bootstrapped distribution that we then used as a null distribution in which 

disease status is independent of number of ewe-subpopulations detected. The final step was to compare 

the empirically observed sum of squared treatement effects over sum of squared residuals to the null 

distribution, with the proportion of bootstrapped test statistics in excess of the empirically observed test

statistic providing a bootstrapped p-value. We used an identical bootstrap approach to determine 

whether the number of ewe-subpopulations differed significantly between populations, except in this 

case treatments were taken to be populations. 

3. Temporal autocorrelation in ewe-subpopulation membership



To measure stability of ewe-subpopulation membership across years, we followed the approach 

taken by Palla et al. [2]. First, we determined groups in consecutive years that had the maximum group 

membership overlap. For two ewe-subpopulations, A in year t and B in year t + 1, we defined “overlap”

as

C ( A ,B )=
A ∩ B
A∪B

where A∪B  represents the ewes contained in either group A or B, and A ∩B  is the ewes present

in both groups A and B. A ewe-subpopulation A in year t was “matched" with a ewe-subpopulation B in

year t + 1 when the overlap between subpopulations A and B was greater than the overlap between 

subpopulation A and any other subpopulation in year t + 1. We considered “matched" subpopulations to

be essentially the same, with marginal changes through time. We quantified year-to-year subpopulation 

stability using an approximate autocorrelation [2] defined as 

C (t )=
|A (t 0 )∪ A ( t0+t )|
|A (t 0 )∩ A ( t0+t )|

where |A (t 0 )∪ A (t 0+t )|  is the number of ewes present in both subpopulation A at time t 0  and in 

ewe-subpopulation A at time t 0+ t  and |A (t 0 ) ∩ A (t 0+ t )|  is the set of all ewes present in either

A (t 0 ) , A (t 0+ t ) , or both [2]. High autocorrelation suggested consistent year-to-year ewe-

subpopulation membership, whereas low autocorrelation suggests reshuffling of subpopulation 

membership between years.

All study populations displayed temporal autocorrelation in ewe-subpopulation membership 

across years (shaded region of Fig. S5), suggesting that ewe social bonds generally persist or are re-

established consistently. Although autocorrelation decay rates over time varied among populations, all 

populations displayed the similar qualitative trend, suggesting that temporal patterns in subpopulation 

stability do not vary substantially between populations. Perceived changes in ewe-subpopulation 



membership occurred primarily when new individuals were collared or died, and  occasionally when 

individuals switched ewe-subpopulations between years.

4 Multilevel Poisson Model

After identifying distinct ewe-subpopulations within each cohort, we examined relationships 

between number and size of ewe-subpopulations, the daily observed group size within which ewes 

occurred, and population size.  We tested whether the observed number of ewe-subpopulations during 

the lth  study year in the mth  population ( λl depended on population size (as measured by total 

number of ewes counted in annual aerial surveys) with a hierarchical Poisson model containing a fixed 

effect for total ewes counted (“TotEwes”), and a random intercept for each population (“pop”). We 

included an overdispersion term, φ ,  to capture extra-Poisson variation (Agresti 2007). Formally, 

this model was

log ( λ l )=β0+β1TotEwesm [l ]+ popm [l ]+φ i ,

popm∼N ( μ pop , τ pop )

In this model, our inferential focus was on the posterior density associated with the β1  parameter, 

which links total counted ewes to the observed number of ewe groups in the population. 

Generalized linear mixed model fit by maximum likelihood ['glmerMod']

 Family: poisson ( log )

Formula: no.components ~ tot.ewes + (tot.ewes | Herd) 

   Data: popyr.component.tab 

      AIC       BIC    logLik  deviance 

 228.9527  239.3404 -109.4763  218.9527 

Random effects:

 Groups Name        Variance  Std.Dev. Corr 



 Herd   (Intercept) 2.502e-01 0.500164      

        tot.ewes    4.867e-05 0.006976 -1.00

Number of obs: 59, groups: Herd, 5

Fixed effects:

            Estimate Std. Error z value Pr(>|z|)   

(Intercept) 0.534958   0.301354   1.775  0.07587 . 

tot.ewes    0.013297   0.004593   2.895  0.00379 **

5. Piecewise Regression

We fit a piecewise linear regression model to describe how the number of ewe-subpopulations 

related to median group size. Piecewise regression allows a process to abruptly change forms at some 

(model-estimated) point along a covariate axis. In this case, we fit median daily group sizes as a 

function of the number of subpopulations present in each population, and allowed for a possible 

changepoint in the relationship between daily group size and number of ewe-subpopulations. In this 

model, λk  represents the median daily group size observed for individuals in the k th  

subpopulation in the jth  year. Let β1  be the linear relationship between number of ewe-

subpopulations (“NumSubPops”) and median daily group size prior to the changepoint; let U be the 

changepoint, and let γ  be the adjustment to the relationship between number of groups and group 

size for numbers of groups exceeding the changepoint. Then the changepoint model is

log ( λk )=β0+β1 NumSubPops j [k ]+γ (NumSubPops j [ k ] − U )× step ( N umSubPops j [k ] −U ) .

Interval estimates for all piecewise regression model coefficients

      Change Point Initial Slope Slope Change Second Slope

2.5%      1.541095    -14.176396    0.1103687   -0.7245282

97.5%     7.111524     -0.227666   14.6360225    3.2145788

6. Group size by population size



We tested whether the median observed ewe group size during the lth  study year in the

mth  population ( mul ) depended on population size (as measured by total number of ewes counted

in annual aerial surveys) with a hierarchical linear model containing a fixed effect for total ewes 

counted (“TotEwes”), and a random intercept for each population (“pop”). Formally, this model was

mul=β0+β1TotEwesm [l ]+ popm [l ] ,

popm∼N ( μpop , τ pop )

In this model, our inferential focus was on estimates associated with the β1  parameter, which links 

total counted ewes to the observed median group size during that population-summer. 

 Linear mixed model fit by REML ['lmerMod']

Formula: med.grpsz ~ tot.ewes + (1 | Herd) 

   Data: popyr.component.tab 

REML criterion at convergence: 344.3188 

Random effects:

 Groups   Name        Variance Std.Dev.

 Herd     (Intercept)  0.00    0.000   

 Residual             19.15    4.376   

Number of obs: 59, groups: Herd, 5

Fixed effects:

            Estimate Std. Error t value

(Intercept) 10.40952    1.38748   7.502

tot.ewes    -0.01064    0.02678  -0.397

7. Variance Decomposition

To determine an organizational level of transmission most consistent with observed lamb 

mortality patterns in Hells Canyon, we decomposed the variance in the proportion of lambs that 



survived through September 30th. We compared variation in lamb mortality outcomes at four 

organizational levels: populations, years within populations (“years”), ewe-subpopulations, and ewes. 

We took years to be nested in populations because disease severity was not temporally synchronized 

across all Hells Canyon populations. A nested structure allowed different populations to experience 

different disease statuses in the same year. Comparisons were based on a variance decomposition 

performed using a multilevel logistic regression model with random effects for ewes, ewe-

subpopulations, years, and populations. Ewe effects were estimated across all years during which a ewe

reproduced, regardless of that year’s disease status. For the ith  lamb born to the  jth  ewe in the

k th  ewe-subpopulation during the lth  year in the mth  population, this corresponded to the 

following multilevel model:

log ( pi

1 − pi
)=groupk [i ]+ewe j [ i ] ,

groupk∼N ( yearl [k ] , τ group, PN × I (PN status) k+τgroup , Healthy × (1− I ( PN status )k )) ,

yearl∼N ( popm [l ]+δ I ( PN status )l , τ year, PN × I ( PN status )l+τ year, Healthy × (1− I ( PN status )l )) ,

ewe j∼N ( 0, τewe )

I ( PN status )  terms take on the value 0 for years classified as healthy, and 1 otherwise. In general, 

these indicator terms control the variance estimate to which each observation contributes. Indicator 

terms were generated separately for each level of the model, but always retain the same meaning: any 

ewe-group present in a year classified as having pneumonia is assigned an I ( PN status )  term of 1, 

as is any year classified as having pneumonia.

For our purposes, the critical attributes of this model are the precision parameters, τ group ,PN ,

τ group ,Healthy , τ year , PN , τ year, Healthy , and τewe , which we inverted to variances following model 

fitting. Our focus was on the relative size of each component. High variance at a particular level 

indicated that the proportion of lambs surviving differed between observations at that level, whereas 



low variance meant that lamb survival proportions were similar for all units at that level (e.g., Figure 

1D). For example, high variance at the ewe-group level meant that lamb survival in some ewe groups 

was very different than in other groups, whereas low variance suggested all groups experienced similar 

within-group mortality rates.

JAGS Model Statement

model { 
  #FEs
  #pop intercepts
  for(i in 1:n.pops){ 
    alpha[i] ~ dnorm(0, 0.01)
  }
  
  #pn effect
  delta ~ dnorm(0, 0.01)  

  #loop for year-level terms
  for(i in 1:n.years){
    b.year[i] ~ dnorm(alpha[pop.hier[i]] + delta * pn.status[i], tau.year.pn * pn.status[i] + tau.year.he * 
he.status[i]) #year effect
  }
  
  #loop for component-level terms
  for (i in 1:n.compos) { 
    b.compo[i] ~ dnorm(b.year[year.hier[i]], tau.compo.pn * compo.pn.status[i] + tau.compo.he * 
compo.he.status[i])  #component effect
  }
  
  #loop for ewe-level terms
  for(i in 1:n.ewes){
    b.ewe[i] ~ dnorm(mu.ewe, tau.ewe) #ewe effect
  }
  
  tau.compo.he <- pow(sigma.compo.he, -2)
  tau.compo.pn <- pow(sigma.compo.pn,-2)
  sigma.compo.he ~ dunif(0, 10)
  sigma.compo.pn ~ dunif(0, 10)
  
  tau.year.he <- pow(sigma.year.he, -2)
  tau.year.pn <- pow(sigma.year.pn, -2)
  sigma.year.he ~ dunif(0, 10)
  sigma.year.pn ~ dunif(0, 10)
  
  mu.ewe <- 0 
  tau.ewe <- pow(sigma.ewe, -2)



  sigma.ewe ~ dunif(0, 10)
  
  #binomial likelihood
  for(i in 1:n){
    C[i] ~ dbin(p[i], N[i])
    logit(p[i]) <- b.compo[compo[i]] + b.ewe[ewe[i]]
  }
}

Summary of MCMC output

 Quantiles for each variable:

Posterior quantiles for each variable

                   2.5%     25%     50%     75%     97.5%
beta.int       -1.93295 -1.4256 -1.2242 -1.0319 -0.5574
delta           1.39940  1.8810  2.1300  2.4010  2.9664
sigma.compo.he   0.02036  0.2117  0.4343  0.7051  1.3149
sigma.compo.pn   0.77227  1.1872  1.4115  1.6576  2.2096
sigma.ewe        0.02115  0.2267  0.4057  0.5935  0.9542
sigma.pop        0.01294  0.1296  0.2798  0.5063  1.4556
sigma.year.he    0.01237  0.1286  0.2792  0.4838  0.9644
sigma.year.pn    0.03304  0.3124  0.5818  0.8666  1.4473

Gelman-Rubin statistics

Gelman-Rubin statistics were <1.03 for all parameters.

8. Variance decomposition without ewe-groups

We conducted a second variance decomposition to examine how variance was attributed when ewe-

groups were not included in the model hierarchy. The resulting variance decomposition is shown in 

Figure S4.

Posterior quantiles for each variable:

                    2.5%     25%     50%     75%   97.5%
beta.int      -1.78546 -1.3820 -1.2117 -1.0493 -0.6579
delta          1.33368  1.7362  1.9491  2.1691  2.6217
sigma.ewe      0.01874  0.2060  0.3820  0.5576  0.8810
sigma.pop      0.01051  0.1008  0.2173  0.3987  1.1725



sigma.year.he   0.01011  0.1216  0.2634  0.4487  0.8886
sigma.year.pn   0.55791  0.8280  0.9855  1.1606  1.5660
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Supplementary tables

Table S1. Attributes associated with all lamb cohorts included in this study.



Table S1 (continued). Attributes associated with all lamb cohorts included in this study.


