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S1 Timing of male dispersal

Dispersal after mating In case males disperse after mating, they become effectively philopatric: males
achieve all their reproductive success in their natal environment, after which they have no effect on the
population dynamics anymore. In order to incorporate male dispersal after mating, we therefore have
to take into account the numbers of males that breed (and have been born) in environments 1 and 2.
To model this, we assume that the population consists of four classes of individuals. First, there are nf1
females that breed in environment 1, nf2 females that breed in environment 2, nm1 males that are born and
breed in environment 1 and nm2 males that are born in and breed in environment 2. Based on the transition
matrix in eq. (1) of the main text, we now analyze the model [nf1,nf2,nm1,nm2]T

t+1 = A[nf1,nf2,nm1,nm2]T
t

(T denoting transposition), where A is a matrix that governs transitions between the four different classes

A =
1
2


pv f1(s1) p f2(s2) p yf1

ym1
v f1(s1) p yf2

ym2
f2(s2)

(1 − p)v f1(s1) (1 − p) f2(s2) (1 − p) yf1
ym1

v f1(s1) (1 − p) yf2
ym2

f2(s2)
m1(s1) 0 yf1

ym1
m1(s1) 0

0 m2 (s2) 0 yf2
ym2

m2(s2)

 . (S1)

For example, entry a31 reflects the contribution of a female breeding in a type 1 environment to a male
born in a type 1 environment, who will also breed in his natal environment. Similarly, entry a41 shows that
a female breeding in environment 1 does not contribute to the presence of males in a type 2 environment,
as her sons will only mate in environment 1. Entry a13 reflects the contribution of a male breeding in
environment 1 to females breeding in the same environment. His mating success with females born in
that environment is given by the frequency of females breeding in environment 1, yf1, relative to the total
number of males breeding in environment 1, ym1. Subsequently, this term needs to be multiplied by the
survival probability v of his daughters in that environment times the sex ratio of the brood f1(s1), times
the probability p that a daughter will settle –in the next generation– in environment 1. The other entries
can be derived in a similar fashion.

Solving for the right eigenvector we obtain (see eqns. A3, A4)

λ = (1 − p) f2(s2) + pv f1(s1). (S2)

and

yT = [yf1,yf2,ym1,ym2] =
[

p, 1 − p, pm1(s1)
pv f1(s1)+(1−p) f2(s2) ,

(1−p)m2(s1)
pv f1(s1)+(1−p) f2(s2)

]
. (S3)

From the left eigenvector we can also derive the left eigenvector of reproductive values z

z =
[

1, γ1(1−s2)
γ2(1−s1)v ,

(1−p)(1−s2)γ1+p(1−s1)γ2v
s1−(1−c)s1s2

, (1−s2)[(1−p)γ1(1−s2)+p(1−s1)γ2v]
(1−s1)s2γ2v

]
. (S4)

From A, we can then derive the mutant transition matrices Bmother and Boffspring when sex allocation is
expressed in the mother and offspring respectively:

Bmother =
1

2λ


pv f1(ŝ1) p f2(ŝ2) p yf1

ym1
v f1(s1) p yf2

ym2
f2(s2)

(1 − p)v f1(ŝ1) (1 − p) f2(ŝ2) (1 − p) yf1
ym1

v f1(s1) (1 − p) yf2
ym2

f2(s2)
m1(ŝ1) 0 yf1

ym1
m1(s1) 0

0 m2 (ŝ2) 0 yf2
ym2

m2(s2)

 (S5)
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Boffspring =
1

2λ


pv f1(ŝ1, s̃1) p f2(ŝ2, s̃2) p yf1

ym1
v f1(ŝ1, s̃1) p yf2

ym2
f2(ŝ2, s̃2)

(1 − p)v f1(ŝ1, s̃1) (1 − p) f2(ŝ2, s̃2) (1 − p) yf1
ym1

v f1(ŝ1, s̃1) (1 − p) yf2
ym2

f2(ŝ2, s̃2)
m1(ŝ1, s̃1) 0 yf1

ym1
m1(ŝ1, s̃1) 0

0 m2 (ŝ2, s̃2) 0 yf2
ym2

m2(ŝ2, s̃2)

 (S6)

and calculate selection gradients for the sex allocation strategy (s1m,s2m) expressed by mothers according
to eq. (3) in the main text. This yields selection gradients of an identical form as in eq. (A5)

dW
dŝ1

∣∣∣∣ŝ1=s1
ŝ2=s2

=
yf1

2λγ2
1

[zm1 − cv (zf1 p + zf2(1 − p))]

dW
dŝ2

∣∣∣∣ŝ1=s1
ŝ2=s2

=
yf2

2λγ2
2

[zm2 − c (zf1 p + zf2(1 − p))] , (S7)

yet when substituting for y and z we obtain

s?1m =
1

1 + c
,s?2m =

1
1 + c

(S8)

Similarly for the sex allocation strategy (s1o,s2o) expressed by offspring (see eq. [4] in the main text),
we obtain

dW
dŝ1

∣∣∣∣ŝ1=s̃1=s1
ŝ2=s̃2=s2

=
yf1

γ1λ

(
zm1 − v (zf1 p + zf2(1 − p)) +

1
2γ1

(1 − c) [zm1s1 − v (1 − s1) (zf1 p + zf2(1 − p))]
)
,

dW
dŝ2

∣∣∣∣ŝ1=s̃1=s1
ŝ2=s̃2=s2

=
yf2

γ2λ

(
zm2 − (zf1 p + zf2(1 − p)) +

1
2γ2

(1 − c) [zm2s2 − (1 − s2) (zf1 p + zf2(1 − p))]
)
. (S9)

After some algebra, solving for these selection gradients yields

s?1o =
1

1 +
√

c
,s?2o =

1
1 +
√

c
(S10)

so that condition-dependent sex allocation is necessarily absent in case of male philopatry for both par-
ents and offspring.

Dispersal before mating In case of dispersal before mating, we assume that males disperse to envi-
ronment 1 with probability d1, whereas they disperse to environment 2 with probability 1 − d1, where
they mate. Again, the population consists of four classes of individuals. First, there are nf1 females that
breed in environment 1, nf2 females that breed in environment 2, nm1 males that breed in environment 1
and nm2 males that breed in environment 2. We then obtain the following resident transition matrix

A =
1
2


pv f1(s1) p f2(s2) p yf1

ym1
v f1(s1) p yf2

ym2
f2(s2)

(1 − p)v f1(s1) (1 − p) f2(s2) (1 − p) yf1
ym1

v f1(s1) (1 − p) yf2
ym2

f2(s2)
d1m1(s1) d1m2(s2) d1

yf1
ym1

m1(s1) d1
yf2
ym2

m2(s2)
(1 − d1)m1(s1) (1 − d1)m2(s2) (1 − d1) yf1

ym1
m1(s1) (1 − d1) yf2

ym2
m2(s2)

 . (S11)

and we have the following mutant transition matrices when (s1,s2) are controlled by mother and offspring
respectively

Bmother =
1

2λ


pv f1(ŝ1) p f2(ŝ2) p yf1

ym1
v f1(s1) p yf2

ym2
f2(s2)

(1 − p)v f1(ŝ1) (1 − p) f2(ŝ2) (1 − p) yf1
ym1

v f1(s1) (1 − p) yf2
ym2

f2(s2)
d1m1(ŝ1) d1m2(ŝ2) d1

yf1
ym1

m1(s1) d1
yf2
ym2

m2(s2)
(1 − d1)m1(ŝ1) (1 − d1)m2(ŝ2) (1 − d1) yf1

ym1
m1(s1) (1 − d1) yf2

ym2
m2(s2)

 (S12)
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Boffspring =
1

2λ


pv f1(ŝ1, s̃1) p f2(ŝ2, s̃2) p yf1

ym1
v f1(ŝ1, s̃1) p yf2

ym2
f2(ŝ2, s̃2)

(1 − p)v f1(ŝ1, s̃1) (1 − p) f2(ŝ2, s̃2) (1 − p) yf1
ym1

v f1(ŝ1, s̃1) (1 − p) yf2
ym2

f2(ŝ2, s̃2)
d1m1(ŝ1, s̃1) d1m2(ŝ2, s̃2) d1

yf1
ym1

m1(ŝ1, s̃1) d1
yf2
ym2

m2(ŝ2, s̃2)
(1 − d1)m1(ŝ1, s̃1) (1 − d1)m2(ŝ2, s̃2) (1 − d1) yf1

ym1
m1(ŝ1, s̃1) (1 − d1) yf2

ym2
m2(ŝ2, s̃2)

 .
(S13)

Again, we can derive reproductive values and class frequencies as in eqns. A3, A4, as well as the
selection gradient when sex allocation is expressed in the mother or zygote. After some algebra, we find
the same condition-dependent sex allocation optima as in Table 1 in the main text.
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S2 Invasion by a dominant offspring masculinizer

Here we consider the coevolution of a dominant offspring masculinizer and condition-dependent sex
allocation (s1,s2) expressed by the mother. Consider three unlinked loci: the first two loci S1 and S2
codes for maternally controlled condition-dependent sex allocation (s1,s2). We assume additive gene
action at these loci and assume that any gene interactions with the other locus are absent. Since under
additive gene action a locus with diploid inheritance is functioning like a haploid locus, we assume
(for sake of simplicity) that the S1 and S2 loci obey haploid inheritance (individual-based simulations
asssuming diploid loci reach identical results). In the section “Maternal coevolutionary response” below,
we consider the evolution at S1 and S2 through the successive invasion and substitution of maternal sex
allocation mutants of small effect.

The third locus, Y, is expressed in the zygote; individuals having the yy genotype defer control over
sex allocation to the mother, and thus become male with probability si or ŝi dependent on whether it is
born from a resident or mutant mother. In contrast, individuals having the mutant Y y genotype always
develop as males, independent of their maternal genotype and the environment. While males always
survive to become breeding adults, females survive with probability v in environment 1, and always
survive in environment 2. Since Y y males will only mate with yy females, the genotype YY does not
exist. Let the column vector xt = [x1,t ,x2,t ,x3,t ,x4,t]T describe the frequencies of the different types in the
population at time t: x1,t and x2,t describe the frequencies of yy females breeding in patch types 1 and 2
respectively, whereas x3,t and x4,t describe the frequencies of yy males and Y y males across all patches.
As the offspring masculinizer invades, selection may favor mutant mothers with slightly divergent sex
allocation strategies (ŝ1, ŝ2). Consequently, the coevolution of Y and (ŝ1, ŝ2) leads to changes in the
frequency vector x, which is given by the dynamic xt+1 = Bxt , where B is the 4×4 transition matrix

B =
1

2λ


pv (1 − ŝ1)

[
`yyhyy (ŝ1) +

1
2`Y yhY y (ŝ1)

]
p (1 − ŝ2)

[
`yyhyy (ŝ2) +

1
2`Y yhY y (ŝ2)

]
(1 − p)v (1 − ŝ1)

[
`yyhyy (ŝ1) +

1
2`Y yhY y (ŝ1)

]
(1 − p) (1 − ŝ2)

[
`yyhyy (ŝ2) +

1
2`Y yhY y (ŝ2)

]
`yyhyy (ŝ1) ŝ1 +

1
2`Y yhY y (ŝ1) ŝ1 `yyhyy (ŝ2) ŝ2 +

1
2`Y yhY y (ŝ2) ŝ2

1
2`Y yhY y (ŝ1) 1

2`Y yhY y (ŝ2)

p
[
q1vhyy (s1) (1 − s1) + q2hyy (s2) (1 − s2)

] 1
2 p
[
q1vhY y (s1) (1 − s1) + q2hY y (s2) (1 − s2)

]
(1 − p)

[
q1vhyy (s1) (1 − s1) + q2hyy (s2) (1 − s2)

] 1
2 (1 − p)

[
q1vhY y (s1) (1 − s1) + q2hY y (s2) (1 − s2)

]
q1hyy (s1)s1 + q2hyy (s2)s2

1
2 q1hY y (s1)s1 +

1
2 q2hY y (s2)s2

0 1
2 q1hY y (s1) +

1
2 q2hY y (s2)

 ,
(S14)

where λ is the dominant eigenvalue of the resident transition matrix A≡B|s1=ŝ1,s2=ŝ2 . Additionally, hyy(si)
and hY y(si) are the fecundities of mothers mated to yy and Y y fathers respectively:

hyy (si) =
1

sic + 1 − si
, hY y

(
s j
)

=
1

1
2 (1 + si)c +

1
2 (1 − si)

,

while `yy = x3/(x3 +x4) and `Y y = x4/(x3 +x4) are the probabilities that a given female mates with a yy and
Y y male (assuming random mating). Lastly, q1 = x1/(x3 + x4) and q2 = x2/(x3 + x4) are the probabilities
that a given male successfully achieves a mating with a female that breeds in environment 1 or in patch
2 respectively.

To briefly illustrate the model in eq. (S14), let us illustrate two entries of the matrix B: entry b11
describes the proportion of yy daughters breeding in environment 1 produced by a yy mother with mutant
sex allocation strategy (ŝ1, ŝ2), who breeds herself in environment 1 too. With probability `yy, the mother
has mated with an yy male. Subsequently, her fecundity is hyy(ŝ1), and a proportion 1 − ŝ1 of these
offspring develop as daughters. Alternatively, with probability `Y y, she mates with a Y y male, so that her
fecundity is hY y(ŝ1). In the latter case, half of her offspring receive the Y y genotype, and those always
develop as males. The remaining half, however, receive the yy genotype, and a proportion 1 − ŝ1 of
them develop as daughters. Lastly, of all daughters produced in environment 1, only a proportion v will
survive. Of all surviving daughters, a proportion p will breed in environment 1 in the next generation.

Entry b41 describes the production of Y y sons by a yy female breeding in environment 1. Such sons
can only be produced when she mates with a Y y male, given by probability `Y y. She then has fecundity
hY y(ŝ1) and half of all offspring receive the Y y genotype, who subsequently all develop as male
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S2.1 Invasion dynamics of the masculinizer

The change in frequency of the offspring masculinizer is given by

x4,t+1 = x4,t
w4

w̄
= x4,t

∑4
j=1 a4 jx j,t∑4

i=1
∑4

j=1 xi,tai jx j,t
, (S15)

where ai j are entries of the resident transition matrix A. We assume that a rare masculinizer invades
in a population that has reached an equilibrium maternal sex allocation strategy (s∗1,s

∗
2) given by Table

1. Conditions for invasion by a rare masculinizer can be obtained by calculating the Jacobian matrix J
from the system Axt=0, where xt=0 = [x1,x2,x3,0]T being the right eigenvector of A for the sex allocation
strategy (s∗1,s

∗
2) in absence of the masculinizer. Results for J are tedious and not very informative, so we

summarize results graphically in Supplementary Figure S2A, and the shadings in the relevant Figures in
the main text.

S2.2 Maternal coevolutionary response

Upon invasion by the masculinizer, we iterate the dynamic in eq. (S15) and update the values of the
eigenvector z accordingly during each generation. When the masculinizer achieves its equilibrium fre-
quency x∗4, we then consider a coevolutionary response by mutant mothers, which corresponds to viewing
the evolutionary process as a gradual, mutation-limited process (refs). Specifically, the selection differ-
ential that describes the successful invasion by a slightly deviant sex allocation strategy ŝi is given by

dW
dŝi

=
∂W
∂ŝi

= zT∂B
∂ŝi

∣∣∣∣
ŝ1=s1,ŝ2=s2

x/zTx. (S16)

We assume that mutations in s1 occur independently of those in s2. Upon a successful invasion by a novel
ŝi mutant, it becomes the new resident sex allocation strategy s1 = ŝ1. Subsequently, we then update the
equilibrium value of the masculinizer frequency x4, by iterating eq. (S15) until a new equilibrium is
reached. Subsequently, we repeat these steps by allowing a novel ŝi mutant to invade. This process then
continues until both (s1,s2) and x4 achieve their equilibria.

S3 Invasion by a dominant offspring feminizer

Again, we have the dynamic xt+1 = Bxt . Individuals carrying the ww genotype develop according to
the condition-dependent sex allocation strategy (s1,s2) at locus A. By contrast, individuals bearing the
Ww genotype always develop as females. The column x = [x1, . . . ,x5]T describes the frequencies of
the relevant genotypes in both environments, with x1 and x2 describe the frequencies of ww and Ww
females respectively, who breed in environment 1. x3 and x4 are the equivalent frequencies of ww and
Ww females breeding in environment 2. Lastly, x5 reflects the frequency of males, which necessarily
bear the ww genotype. The matrix B is thus a 5×5 transition matrix

B = 1
2λ


pvhww (ŝ1) (1 − ŝ1) 1

2 pvhWw (ŝ1) (1 − ŝ1) phww (ŝ2) (1 − ŝ2) 1
2 phWw (ŝ2) (1 − ŝ2)

0 1
2 pvhWw (ŝ1) 0 1

2 phWw (ŝ2)
(1 − p)vhww (ŝ1) (1 − ŝ1) 1

2 (1 − p)vhWw (ŝ1) (1 − ŝ1) (1 − p)hww (ŝ2) (1 − ŝ2) 1
2 (1 − p)hWw (ŝ2) (1 − ŝ2)

0 1
2 (1 − p)vhWw (ŝ1) 0 1

2 (1 − p)hWw (ŝ2)
hww (ŝ1) ŝ1

1
2 hWw (ŝ1) ŝ1 hww (ŝ2) ŝ2

1
2 hWw (ŝ2) ŝ2

p
[

x1
x5

hww (s1) (1 − s1)v +
1
2

x2
x5

hWw (s1) (1 − s1)v +
x3
x5

hww (s2) (1 − s2) +
1
2

x4
x5

hWw (s2) (1 − s2)
]

p
[

1
2

x2
x5

hWw (s1)v +
1
2

x4
x5

hWw (s2)
]

(1 − p)
[

x1
x5

hww (s1) (1 − s1)v +
1
2

x2
x5

hWw (s1) (1 − s1)v +
x3
x5

hww (s2) (1 − s2) +
1
2

x4
x5

hWw (s2) (1 − s2)
]

(1 − p)
[

1
2

x2
x5

hWw (s1)v +
1
2

x4
x5

hWw (s2)
]

x1
x5

hww (s1)s1 +
1
2

x2
x5

hWw (s1)s1 +
x3
x5

hww (s2)s2 +
1
2

x4
x5

hWw (s2)s2


.

(S17)
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Fecundities hww(si) and hWw(si) of mothers bearing the ww or Ww alleles respectively are given by

hww (si) =
1

sic + 1 − si
, hWw (si) =

1
1
2 (2 − si) +

1
2 sic

.

The recursion of the frequency of the offspring feminizer genotype f (Ww)t+1 is then given by

f (Ww)t+1 = x2

∑5
j=1 a2 jx j∑5

i=1
∑5

j=1 xiai jx j
+ x4

∑5
j=1 a4 jx j∑5

i=1
∑5

j=1 xiai jx j
, (S18)

where ai j reflects the i jth entry of the resident version A = B|s1=ŝ1,s2=ŝ2 of the transition matrix in (S17).
The coevolutionary dynamics between the feminizer expressed in the offspring and the maternally

expressed condition-dependent sex allocation strategy are described by equivalent equations as for the
masculinizer in eqns. (S15,S16). Invasion conditions for the feminizer expressed by offspring are given
in Figure Supplementary Figure S2B.

S4 Invasion conditions of offspring sex modifiers: summary

Figure S2 depicts the invasion conditions of dominant offspring masculinizers and feminizers. Unsur-
prisingly, the invasion by a masculinizer is impossible when females are more costly to produce than
males (c < 1), since offspring than prefer a more female-biased sex ratio than their mothers, so that any
offspring masculinizer cannot invade (the reverse applies to offspring feminizers, which cannot invade
for values c > 1, Figure S2B). For values of c > 1, the invasion by offspring masculinizers is depen-
dent on the frequency p of the poor environment and the survival probability v of females in the poor
environment. Specifically, for values of p < 1/2 (region I in Figure 1), we find that any masculinizer
can invade regardless of the value of v (Figure S2A). For higher frequencies p of the poor environment,
however, we find that the invasion by a masculinizer becomes more difficult for lower values of v. This
is because lower values of v select for larger number of males to be produced in the more prevalent, poor
environment. Consequently, the resulting male-biased sex ratio reduces the scope for invasion by any
masculinizer. Regarding the invasion by the feminizer, we also find that higher survival v of females
in the poor environment is more conducive to invasion than lower values (Figure S2B), simply because
lower female survival directly reduces the invasion prospects of any feminizing allele.
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S5 Invasion by a maternal brood masculinizer

Mothers carrying the mm genotype produce offspring which determine their own sex according to the
sex allocation strategy (s1,s2). By contrast, heterozygous mothers bearing the Mmm genotype override
the condition-dependent sex allocation strategy expressed by the offspring and produce only sons. The
column vector x = [x1, . . . ,x6]T describes the frequencies of the different types of individuals, with x1 and
x2 describing the frequencies of mm females breeding either in environment 1 or 2. Next, x3 describes
the frequency of females carrying the Mmm allele, breeding in either environment (the environment is
irrelevant, as Mmm mothers produce only sons, who have identical survival prospects in either environ-
ment as assumed by our model). Lastly, x4, x5 and x6 reflect the frequencies of males that either bear
genotypes mm, Mmm or MmMm. Note that MmMm females don’t exist, as Mmm females only transmit
their Mm allele to sons. The 6×6 transition matrix B is then given by

B =
1

2λ



pv
[
`4+

1
2 `5

]
gmm(s̃1)(1−ŝ1) pv

[
`4+

1
2 `5

]
gmm(s̃2)(1−ŝ2) 0

(1−p)v
[
`4+

1
2 `5

]
gmm(s̃1)(1−ŝ1) (1−p)v

[
`4+

1
2 `5

]
gmm(s̃2)(1−ŝ2) 0

v
[

1
2 `5+`6

]
gmm(s̃1)(1−ŝ1) v

[
1
2 `5+`6

]
gmm(s̃2)(1−ŝ2) 0[

`4+
1
2 `5

]
gmm(s̃1)ŝ1

[
`4+

1
2 `5

]
gmm(s̃2)ŝ2

[
1
2 `4+

1
4 `5

]
gMmm[

1
2 `5+`6

]
gmm(s̃1)ŝ1

[
1
2 `5+`6

]
gmm(s̃2)ŝ2

[
1
2 `4+

1
2 `5+

1
2 `6

]
gMmm

0 0
[

1
4 `5+

1
2 `6

]
gMmm

p[vq1gmm(s̃1)(1−ŝ1)+q2gmm(s̃2)(1−ŝ2)] 1
2 p[vq1gmm(s̃1)(1−ŝ1)+q2gmm(s̃2)(1−ŝ2)] 0

(1−p)[vq1gmm(s̃1)(1−ŝ1)+q2gmm(s̃2)(1−ŝ2)] 1
2 (1−p)[vq1gmm(s̃1)(1−ŝ1)+q2gmm(s̃2)(1−ŝ2)] 0

0 1
2 [vq1gmm(s̃1)(1−ŝ1)+q2gmm(s̃2)(1−ŝ2)] vq1gmm(s̃1)(1−ŝ1)+q2gmm(s̃2)(1−ŝ2)

q1gmm(s̃1)ŝ1+q2gmm(s̃2)ŝ2+
1
2 q3gMmm

1
2 [q1gmm(s̃1)ŝ1+q2gmm(s̃2)ŝ2]+

1
4 q3gMmm 0

1
2 q3gMmm

1
2 [q1gmm(s̃1)ŝ1+q2gmm(s̃2)ŝ2]+

1
2 q3gMmm q1gmm(s̃1)ŝ1+q2gmm(s̃2)ŝ2+

1
2 q3gMmm

0 1
4 q3gMmm

1
2 q3gMmm

 ,
(S19)

where gmm(s̃i) and gMmm are the fecundities of mothers that bear the mm or Mmm genotypes respectively.
Note that gmm(s̃i) is a function of the average sex allocation strategy by the brood s̃i. By contrast, gMmm

is independent of any condition-dependent sex allocation, as all individuals develop as males:

gmm (s̃i) =
1

s̃ic + 1 − s̃i
, gMmm =

1
c
.

Next, `k = xk/(x4 + x5 + x6) with k ∈ {4,5,6} describes the probability that a female mates with a mm,
Mmm or MmMm male. Similarly, q j = x j/(x4 + x5 + x6) with j ∈ {1,2,3} describes the probability that a
male successfully competes for a mating with mm females living in environment 1 or two (x1, x2) or an
Mmm female (x3).

As an example, entry b42 describes the number of mm sons produced by a mm-mother living in a
type 2 environment. With probability `4 the mm mother has mated with a mm male, producing only mm
offspring. With probability `5, this mm-mother mates with a Mmm male, so that half of all offspring bear
the mm genotype. As the mother herself bears the mm genotype, she produces a brood of size g f f (s̃2) in
both cases. Individual offspring sex allocation mutants subsequently develop as males with probability
ŝ2.

The change in frequency of the maternal brood masculinizer allele is then given by

f (Mm)t = x3

∑6
j=1 a3 jx j∑6

i=1
∑6

j=1 xiai jx j
+ x5

∑6
j=1 a5 jx j∑6

i=1
∑6

j=1 xiai jx j

+ 2x6

∑6
j=1 a6 jx j∑6

i=1
∑6

j=1 xiai jx j
, (S20)

where ai j reflect entries from the resident transition matrix A = B|s1=s̃1=ŝ1,s2=s̃2=ŝ2 . The coevolutionary
response by the offspring condition-dependent sex allocation trait s j is given by

dW
dŝ j

=
∂W
∂ŝ j

∣∣∣∣
ŝ j=s̃ j=s j

+R
∂W
∂s̃ j

∣∣∣∣
ŝ j=s̃ j=s j

, (S21)
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where

∂W
∂ŝx

∣∣∣∣
ŝx=sx

= zT ∂B
∂ŝx

∣∣∣∣
ŝx=sx

x/zTy.

Invasion conditions for the brood masculinizer expressed by mothers are given in Figure Supplementary
Figure S2C.

S6 Invasion by a maternal brood feminizer

Mothers carrying the f f genotype produce offspring who determine their own sex according to the sex
allocation strategy (s1,s2). By contrast, mothers carrying the Fm f genotype override any sex allocation
strategy by the offspring and produce only daughters. The column vector x = [x1, . . . ,x5]T describes the
frequencies of the different types of individuals, with x1 and x2 describing the frequencies of f f and
Fm f females breeding in environment 1 and similarly, x3 and x4 describing the frequencies of f f and
Fm f females in environment 2. Lastly, x5 reflects the frequencies of males that either bear genotypes
f f . Note that Fm f males do not exist, as the Fm genotype is exclusively transmitted from mothers to
daughters. The 5×5 transition matrix B is then given by

B =
1

2λ
×

pvg f f (s̃1)(1−ŝ1) 1
2 pvgFm f pg f f (s̃2)(1−ŝ2) 1

2 pgFm f p
[

vq1g f f (s̃1)(1−ŝ1)+q3g f f (s̃2)(1−ŝ2)+ 1
2 (q2v+q4)gFm f

]
0 1

2 pvgFm f 0 1
2 pgFm f

1
2 p(q2v+q4)gFm f

(1−p)vg f f (s̃1)(1−ŝ1) 1
2 (1−p)vgFm f (1−p)g f f (s̃2)(1−ŝ2) 1

2 (1−p)gFm f (1−p)
[

vq1g f f (s̃1)(1−ŝ1)+q3g f f (s̃2)(1−ŝ2)+ 1
2 (q2v+q4)gFm f

]
0 1

2 (1−p)vgFm f 0 1
2 (1−p)gFm f

1
2 (1−p)(q2v+q4)gFm f

g f f (s̃1)ŝ1 0 g f f (s̃2)ŝ2 0 q1g f f (s̃1)ŝ1+q3g f f (s̃2)ŝ2


(S22)

where g f f (s̃i) and gFm f are the fecundities of mothers bearing the f f or Fm f genotypes. Note that g f f (s̃i)
is dependent on the average brood sex allocation strategy s̃i, whereas gFm f is independent of any offspring
sex allocation strategy, as exclusively daughters are produced:

g f f (s̃i) =
1

s̃ic + 1 − s̃i
, gFm f = 1.

Next, qk = xk/x5 reflect the probabilities that a given male secures a mating with a female bearing geno-
type k ∈ {1,2,3,4}. The change in frequency f (Fm) of the offspring feminizer is then given by

f (Fm) = x2

∑5
j=1 a2 jx j∑5

i=1
∑5

j=1 xiai jx j
+ x4

∑5
j=1 a4 jx j∑5

i=1
∑5

j=1 xiai jx j
. (S23)

where the coevolving offspring sex allocation strategies follow a dynamic given by the selection differ-
entials in eq. (S21). Consequently, invasion conditions for the brood feminizer expressed by mothers are
given in Figure Supplementary Figure S2D.
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S7 Errors in environmental perception

We alter the model in the main text by assuming that mothers accurately assess the state of the environ-
ment or their condition with probability 1 − ε, whereas with probability ε, mothers incorrectly perceive
the opposite environment. For a mutant mother with sex-allocation strategy (ŝi, ŝ j), the functions fi and
mi in eq. (A1) that give the number of her sons and daughters are now given by

fi
(
ŝi, ŝ j

)
=(1 −ε)

1 − ŝi

ŝic + 1 − ŝi
+ε

1 − ŝ j

ŝ jc + 1 − ŝ j
,

mi
(
ŝi, ŝ j

)
=(1 −ε)

ŝi

ŝic + 1 − ŝi
+ε

ŝ j

ŝ jc + 1 − ŝ j
, . (S24)

Regarding offspring control over environmental perception, we assume that each offspring is able to
perceive the particular environment individually. As a result, 1 − ε of all offspring correctly perceive
the environment, whereas ε of all offspring perceive the wrong environment, leading to the following
functions fi and mi:

fi
(
ŝi, s̃i, ŝ j, s̃ j

)
=

(1 −ε) (1 − ŝi) +ε
(
1 − ŝ j

)
(1 −ε) [1 − s̃i + s̃ic] +ε

[
1 − s̃ j + s̃ jc

] ,
mi
(
ŝi, s̃i, ŝ j, s̃ j

)
=

(1 −ε)ŝi +εŝ j

(1 −ε) [1 − s̃i + s̃ic] +ε
[
1 − s̃ j + s̃ jc

] .
In the presence of perception errors, selection differentials on s1 and s2 expressed in the mother are given
by

dW
dŝ1

∣∣∣∣
ŝ1=s1,ŝ2=s2

=
1

2λγ2
1

[((1 −ε)yf1 +εyf2)zm − c (yf2ε+ yf1 (1 −ε)v) (zf1 p + zf2 (1 − p))] ,

dW
dŝ2

∣∣∣∣
ŝ1=s1,ŝ2=s2

=
1

2λγ2
2

[((1 −ε)yf1 +εyf2)zm − c (yf2ε+ yf1 (1 −ε)v) (zf1 p + zf2 (1 − p))] . (S25)

and similar selection gradients can be derived for both cases of offspring control. Results are more
tedious in comparison to the error-free scenario, so we focus on a numerical analysis, corroborated with
individual-based simulations (see discussion in main text and Figure S6).
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Figure S1: A comparison of maternal (s1m,s2m) (thick solid lines) and offspring (s1o,s2o) (thick dashed
lines) sex-allocation strategies from Table 1 when varying survival of daughters in environment 1, v
(panels A-C) and the cost of producing sons versus daughters c (panels D-F). White regions: parent-
offspring conflict over sex allocation in one or both environments. Grey regions: no parent-offspring
conflict over sex allocation. Thin dotted lines depict the Fisherian sex ratio 1/(1+c) where sex allocation
is expressed in the mother and environmental variation is absent. Similarly, Triversian sex ratios 1/(1 +√

c) are given by the thin dashed lines.
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Figure S2: Summary of the analytically obtained invasion conditions for environment-independent mas-
culinizers (panel A) and feminizers (panel B) expressed in the zygote when condition-dependent sex allo-
cation is controlled by the mother. Similarly, panels C, D depict the invasion conditions for environment-
independent masculinizers (panel C) and feminizers (panel D) expressed in the mother when condition-
dependent sex allocation is controlled by the offspring. Isoclines depict the parameter space for which
invasion occurs different survival probabilities v of females born in the poor environment.
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Figure S3: Example individual-based simulation showing the successful invasion by a dominant mas-
culinizer Y expressed in the zygote. Panel A: before the invasion by Y, maternal condition-dependent
sex allocation loci s1m and s2m achieve their analytically predicted optima (dotted lines). The subsequent
invasion by Y (panel B) leads to the presence of Yy males, which selects mothers to induce those off-
spring who did not receive the Y chromosome to develop exclusively as daughters (s1m→ 0,s2m→ 0).
As a result, sex ratios produced become independent of the environment and determined by the presence
of Y only (GSD). Parameters: c = 2, p = 0.9, v = 0.5.
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Figure S4: Invasion by a dominant feminizer (W) expressed in the zygote, when condition-dependent sex
allocation is controlled by the mother (s1m,s2m) and when daughters are twice as costly as sons (c = 0.5).
Panel A: grey regions depict the analytically obtained invasion conditions of W, which occurs when
sex allocation optima diverge between parents and offspring. Under certain conditions, however, (left
part of middle white area) sex ratio selection prevents the invasion by W despite divergent maternal and
offspring sex ratio optima. Panel B: upon successful invasion, the stable frequency of W depends on the
frequency p of the poor environment. As a coevolutionary response to the offspring’s W, maternal sex-
allocation strategies become more extreme, often leading either to (s1m,s2m)≈ (1,1) or (s1m,s2m)≈ (1,0),
as shown by individual-based simulations. Panel C: primary sex ratios in both environments taken from
individual-based simulations. Despite the invasion by W, the proportion of males produced still depends
strongly on the environment for a substantial range of p, although resulting sex ratios are now closer to
offspring than to parental optima. Only when the poor environment is relatively rare (i.e., r < 0.28) does
the invasion by W lead to a replacement of condition-dependent sex allocation with GSD. Parameters:
v = 0.5.
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Figure S5: Invasion by a dominant masculinizer Mm expressed in the mother, when condition-dependent
sex allocation is controlled by the offspring (s1o,s2o) and when daughters are twice as costly as sons
(c = 0.5). Panel A: grey areas depict the analytically obtained invasion conditions of Mm (see Figure
S2C). Invasion of Mm occurs when sex allocation optima diverge between parents and offspring, but
under certain conditions (right part of middle white area) sex ratio selection prevents the invasion by Mm
despite divergent maternal and offspring sex ratio optima. Panel B: individual based simulations showing
the coevolutionary outcome between Mm and offspring sex allocation. Upon successful invasion, the
stable frequency of Mm depends on the frequency p of the poor environment. As a coevolutionary
response to maternal Mm, offspring sex-allocation strategies become more extreme, often leading either
to (s1o,s2o) ≈ (1,0) or (s1o,s2o) ≈ (0,0). Panel C: individual-based simulations showing the resulting
primary sex ratios. Despite the invasion by Mm, condition-dependent sex allocation persists over a
substantial range of p, although resulting sex ratios are now closer to parental than to offspring optima.
Only when the poor environment is very common (i.e., p > 0.8) does the invasion by Mm lead to a
replacement of condition-dependent sex allocation with monogeny, with Fisherian sex ratios s = 1/(1 +

c) = 0.67. Parameters: v = 0.5.
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Figure S6: Coevolution between perception errors ε and condition-dependent sex allocation loci (s1,s2)
resulting from numerical iterations of the analytical model. Panels A-C: offspring control sex allocation,
whereas mothers control perception errors. Panels D-F: mothers control sex allocation, whereas offspring
are in control over perception errors (e.g., by expressing hormones that may affect maternal behaviour).
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