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S.A. MASTER EQUATION

The self-repressing gene reaction network involves four chemical species: the unbound

gene G, mRNA M , protein P and the DNA-protein complex GP . These molecular actors

interact via the following biochemical reactions:

G + P
kon/Ω−−−−⇀↽−−−−
koff

GP (S1a)

G
αΩ−→ G+M (S1b)

M
β−→ M+P (S1c)

M
δM−→ ∅ (S1d)

P
δP−→ ∅ (S1e)

The cell volume parameter Ω allows us to consider the limit where the protein and mRNA

copy numbers are macroscopic variables and are not affected by a one-copy variation. Defin-

ing the DNA-protein binding rate as kon/Ω and the transcription rate of the free gene as

αΩ ensures that in the infinite volume limit, the average amount of time spent by the gene

in the active state as well as the mRNA and protein average concentrations m/Ω and p/Ω

remain bounded. The unbinding rate is koff . The parameter δm (resp., δp) is the linear

mRNA (resp., protein) degradation rate and β is the translation rate.

If Pg,m,p(t) denotes the probability to find the gene in stage g (where g = 0 represents the

bound gene and g = 1 the unbound state), together with m mRNA and p protein copies at

time t, its time evolution is governed by the following master equation :

d

dt
Pg,m,p = (−1)g

[

kon
Ω

(p+ 1− g) P1,m,p+1−g − koffP0,m,p−g

]

(S2)

+δg,1αΩ
[

E
−
m − 1

]

Pg,m,p + βm
[

E
−
p − 1

]

Pg,m,p

+δm
[

E
+
m − 1

]

m Pg,m,p + δp
[

E
+
p − 1

]

p Pg,m,p.

where E
±
x is the usual step operator [1] defined by E

±
x f (x, y) = f (x± 1, y).
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S.B. MOMENT EXPANSION

The moments of the probability distribution Pg,m,p are defined by:

Mn1,n2,n3
= 〈gn1mn2pn3〉 =

∑

g,m,p

gn1mn2pn3Pg,m,p. (S3)

The idea of a moment expansion is to use the chemical master equation to derive equations

describing the time evolution of these statistical quantities, taking into account that the

Pg,m,p generally evolves with time [1]. More precisely, the time derivative of the moments

defined by (S3) involves time derivatives of the Pg,m,p probabilities, which may be expressed

in terms of the Pg,m,p themselves using the master equation (S2). The resulting expression

can be rewritten in terms of moments [2].

It is well known that closed equations can only be obtained when the underlying dynamics

is linear. When it is nonlinear, as is the case here, the time derivative of a cumulant of given

order depends on higher-order cumulants, so that there is essentially an infinite number

of equations to be considered. A common strategy to obtain a finite-dimensional set of

equations approximating the chemical master equations is to truncate this infinite hierarchy

in some way. In the present case, we will only consider the infinite cell volume limit, so that

the variations of protein and mRNA copy numbers by one unit is negligible. The remaining

fluctuations in the mRNA and protein concentrations are then only due to gene fluctuations.

The moment expansion that we derive below takes a simpler form if we replace the mRNA

copy number by the weighted average

u =
β m+ δm p

δp + δm
, (S4)

and by using the following rescaled variables

rt =
δm+δp
δpδm

; rg = 1; ru = rp =
kon

koffΩ
; rm = βkon

δpkoffΩ
; (S5a)

T = rt t; G = rg g; U = ru u; P = rp p. (S5b)

Note that since g is a binary variable, 〈gn〉 = 〈g〉, which simplifies the cumulant expansion.

Introducing the following rescaled parameters

ρ =
koff (δm + δp)

δpδm
; Λ =

αβkon
δmδpkoff

; η =
(δm + δp)

2

δmδp
, (S6)
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the normalized time evolution equations for the averages in the infinite cell volume limit

read:

d

dT
〈P 〉 = η [〈U〉 − 〈P 〉] ; (S7a)

d

dT
〈U〉 = Λ〈G〉 − 〈P 〉; (S7b)

d

dT
〈G〉 = ρ (1− 〈G〉 − 〈GP 〉) ; (S7c)

d

dT
〈GU〉 = Λ〈G〉 − 〈GP 〉 − ρ [〈GUP 〉+ 〈GU〉 − 〈U〉] ; (S7d)

d

dT
〈GP 〉 = η [〈GU〉 − 〈GP 〉]− ρ

[

〈GP 2〉+ 〈GP 〉 − 〈P 〉
]

; (S7e)

d

dT
〈U2〉 = 2 [Λ〈GU〉 − 〈PU〉] ; (S7f)

d

dT
〈P 2〉 = 2η

[

〈PU〉 − 〈P 2〉
]

; (S7g)

d

dT
〈UP 〉 = Λ〈GP 〉 − 〈P 2〉+ η

[

〈U2〉 − 〈PU〉
]

. (S7h)

Because of the binary gene binding reaction (S1a), the time derivatives of the second order

moments 〈GU〉 and 〈GP 〉 depend on the third-order moments 〈GUP 〉 and 〈GP 2〉 which are

unspecified at this stage. Thus Eqs. (S7) do not form a closed system of equations.

The moments involving the natural variables G, M , and P can be recovered by the

relations

〈M〉 = (1 + δ) 〈U〉 − 〈P 〉
δ

, (S8a)

〈GM〉 = (1 + δ) 〈GU〉 − 〈GP 〉
δ

, (S8b)

〈MP 〉 = (1 + δ) 〈PU〉 − 〈P 2〉
δ

, (S8c)

〈M2〉 = (1 + δ)2 〈U2〉 − 2 (1 + δ) 〈PU〉+ 〈P 2〉
δ2

. (S8d)

S.C. FIRST ORDER TRUNCATION OF THE MOMENT EXPANSION

A first strategy to truncate the hierarchy of moment equations is to set all covariances

(the second order centered moments) to zero [1]

〈(X − 〈X〉) (Y − 〈Y 〉)〉 = 0,

which enslaves the covariances to the means 〈XY 〉 = 〈X〉〈Y 〉. Under this approximation,

all fluctuations are neglected and the following deterministic rate equations for the averages
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are obtained:

d

dT
〈P 〉 = η [〈U〉 − 〈P 〉] ; (S9a)

d

dT
〈U〉 = Λ〈G〉 − 〈P 〉; (S9b)

d

dT
〈G〉 = ρ (1− 〈G〉 − 〈G〉〈P 〉) . (S9c)

The steady state solution of (S9) is given by

Λ〈G〉∗ = 〈U〉∗ = 〈P 〉∗ = 1

2

(√
1 + 4Λ− 1

)

, (S10)

which does not depend on ρ, and is stable in the entire parameter space. Indeed, it was

noted by Morant et al. [3] that besides the finite gene response time, a nonlinear degradation

mechanism is needed to induce oscillations in this system.

Incorporating fluctuations in the dynamics of the average quantities requires truncating

the hierarchy at a higher order. We discuss two different strategies in the following sections.

S.D. SECOND ORDER TRUNCATION, THE TOT MODEL

A. Derivation of the model

A natural extension of the previous developed truncation is to keep the second order

moments and enslave the third order moments to the means and covariances by assuming

vanishing third order centered moments. So assuming that

KGUP = 〈(G− 〈G〉) (U − 〈U〉) (P − 〈P 〉)〉 = 0, and KGPP = 〈(G− 〈G〉) (P − 〈P 〉)2〉 = 0,

fixes the two following dependencies

〈GUP 〉 = G〈UP 〉+ U〈GP 〉+ P 〈GU〉 − 2〈G〉〈U〉〈P 〉, (S11)

〈GP 2〉 = G〈P 2〉+ 2P 〈GP 〉 − 2〈G〉〈P 〉2. (S12)
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FIG. S1. Comparison of averages and covariances obtained from stochastic simulations

and from the fixed points of ODE models derived using the TOT and TME truncation

schemes. (A) Average gene activity G; (B), (C), (D) covariances ∆GP , ∆GM and ∆PP ; (E), (F)

third-order cumulants computed from numerical simulations. Curves for different values of δ are

color-coded according to legend box. In each panel, thick lines (resp., thin) lines indicate positive

(resp., negative) values.
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Under this hypothesis, the time evolution of averages and covariances is described by the

closed differential system :

d

dT
P = η (U − P ) ; (S13a)

d

dT
U = ΛG− P ; (S13b)

d

dT
G = ρ (1−G−GP −∆G,P ) ; (S13c)

d

dT
∆G,U = ΛG (1−G)−∆G,P − ρ [G∆P,U + (P + 1)∆G,U ] ; (S13d)

d

dT
∆G,P = η [∆G,U −∆G,P ]− ρ [G∆P,P + (P + 1)∆G,P ] (S13e)

d

dT
∆U,U = 2 [Λ∆G,U −∆P,U ] ; (S13f)

d

dT
∆P,P = 2η (∆P,U −∆P,P ) ; (S13g)

d

dT
∆P,U = Λ∆G,P −∆P,P + η [∆U,U −∆P,U ] , (S13h)

where ∆X,Y stand for the covariance of random variables X and Y : ∆X,Y = 〈XY 〉−〈X〉〈Y 〉.
We refer to model (S13) as the Third-Order Truncation (TOT) model.

The steady state of model (S13) is obtained by solving the following equations:

U = P = ΛG; ∆P,P = ∆M,P = ∆U,P = Λ∆G,U ; (S14a)

η∆U,U = (1 + η) Λ∆G,U − Λ∆G,P ; (S14b)

∆G,P = 1−G− ΛG2; (S14c)

(ρ+ ρΛG+ η)∆G,P = [η − ρΛG] ∆G,U ; (S14d)

∆G,P + ρ (1 + 2ΛG)∆G,U = ΛG (1−G) ; (S14e)

∆M,M = Λ ∆G,M = Λ
(1 + δ)∆G,U −∆G,P

δ
. (S14f)

The steady state value of ∆GP , which is the joint correlation between the gene state and

the protein copy number, vanishes when ρΛG = η. The steady state values of averages

in the model (S13) then coincide with those derived from the rate equations (S9), given

by (S10). Except in this particular case, equations (S14) do not admit analytical solutions.

However, asymptotic expressions for the steady state values of averages and covariances can

be obtained by a perturbative expansion when the resonance parameter ρ and feedback

strength Λ are either very large or very small, as is summarized in Table S1. In this

computation, the ratio δ is assumed to be neither very large nor very small. The expressions
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given in Table S1 allow us to characterize the effect of fluctuations in the different limiting

cases considered.

ρ → 0 ρ → ∞ ρ → 0 ρ → ∞

Λ ≪ 1 Λ ≪ 1 Λ ≫ 1 Λ ≫ 1

ΛG∗ = U∗ = P ∗ ≃ Λ + ρΛ Λ + Λ4

ρ 1 + 3ρ
√
Λ
(

1 + 1
4ρ

)

∆∗
GP ≃ Λ2 − ρ −Λ3

ρ 1− 9ρ
Λ − 1

2ρ

∆∗
M,P = ∆∗

P,P = ∆∗
U,P = Λ∆∗

G,U ≃ Λ3 − 3ρΛ2 Λ3

ρ Λ + 3ρΛ−3η
η

√
Λ

2ρ

∆∗
U,U ≃ Λ3 − ρΛ Λ3

ρ
η+2Λ

η Λ + 3ρΛ1+η
η2

√
Λ

2ρ
2+η
η

∆∗
M,M = Λ∆∗

G,M ≃ Λ3 − ρΛ Λ3

ρ
δ+2Λ

δ Λ + 3ρΛ1+δ
δη

√
Λ

2ρ
2+δ
δ

TABLE S1. Asymptotic expressions of the steady state values of averages and covariances for

Eqs. (S13).

The second column of Fig. (S1) shows that the fixed point values of the TOT model are

in good quantitative agreement with the numerical estimators (first column of Fig. (S1)).

Regarding the averages, the overall shapes of the curves, with a maximum around ρ = 1, are

very similar and the evolution of this maximum with δ is reproduced (Fig. S1-A). The main

discrepancy is that the transition from the fast to the slow gene regime is more abrupt in the

TOT model than in stochastic simulations, presumably because higher-order contributions

to the averages are neglected. The global evolution of the covariances is also well reproduced,

and the values of ρ where ∆GP becomes zero are also well predicted for the different values

of δ (Fig. S1B). Similarly, the variation of ∆GM with δ is captured. (Fig. S1-C). However,

the TOT model fixed point values overestimate the covariances ∆GM and ∆PP (Fig. S1-

C,D) in the fast gene limit. Still, the asymptotic values of the TOT model steady states

(summarized in Table S1 in the Supporting Material) are correctly reproduced.

A key assumption of the TOT model is that the third centered moments KG,U,P and

KG,P,P vanish, which is correct in the fast gene limit. However, Figs. S1-E,F show that they

take rather large values in the stochastic simulations, of the order of Λ, in the slow gene

limit. One may thus wonder why the TOT model is effective in this regime. Examining the

structure of the equations solves this paradox.
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Consider the dynamical equations for the covariance ∆GP and ∆GU :

d

dT
∆G,U = ΛG (1−G)−∆G,P − ρ [KG,U,P +G∆P,U + (P + 1)∆G,U ] ; (S15a)

d

dT
∆G,P = η [∆G,U −∆G,P ]− ρ [KG,P,P +G∆P,P + (P + 1)∆G,P ] . (S15b)

The key point is that KGUP and KGPP are both weighted by ρ, so their dynamical influence

vanishes in the slow-gene limit even thought their are non zero.

Figure (S2) displays the values of all terms in Eqs. (S15) for various ρ. In the slow gene

regime, (ρ → 0) the first two terms of each equation dominate (i.e., ΛG (1−G) and ∆GP

for Eq. (S15a); η∆GU and η∆GP For eq. (S15b)) whereas in the fast gene limits, the last

two terms dominate (ρ∆PU and ρ (P + 1)∆GU for eq. (S15a)); ρ∆PP and ρ (P + 1)∆GP for

eq. (S15b)). The fact that third-order central moments do not converge to zero in numerical

simulations when ρ → ∞ is due to numerical cancellation errors in their computation,

because two nearly equal numbers are being substracted, and should not be taken into

account.

In both regimes, the influence of the third order cumulants vanish. It turns out that terms

involving third-order cumulants play a more important role in the intermediate regime where

they are the dominant negative terms in the expression of the time derivative of ∆GU for

ρ ≃ 0.1. Therefore, the TOT model provides an excellent approximation for both fast

and slow gene dynamics, and provides only a reasonable description of the dynamics in the

intermediate regime.

S.E. ALTERNATIVE TRUNCATION, THE TME MODEL

In the moment expansion (S7), Eqs. (S7d-e) describing the time evolution of 〈GP 〉 and
〈GU〉 are independent of 〈U2〉, 〈P 2〉, and 〈UP 〉. However, Eqs. (S7a-e) do not form a closed

system due to the presence of the 〈GUP 〉 and 〈GP 2〉 terms. Here, we use an another closure

approximation by enslaving the third moment 〈GUP 〉 and 〈GP 2〉 to the average gene activity
〈G〉 via a phenomenological function.

In the case of a strong repression (i.e., Λ ≫ 1), the moments 〈GUP 〉 and 〈GP 2〉 can

be derived from considerations both in the slow and the fast gene limits. In the fast gene

limit, the proteins and mRNA number of copies are almost constant over a gene switch

and correspond to their stationary value G ≃ U ≃
√
Λ so 〈GUP 〉ρ→∞ = 〈GP 2〉ρ→∞ =
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FIG. S2. Dynamical influence of the third order cumulants The magnitudes of the different

terms appearing in Eqs. (S15) are numerically computed using stochastic simulations for Λ = 100,

δ = 1 (equal degradation rates), and various ρ. The differential equation at the top of each panel

indicates the color code. In each panel, thick lines (resp., thin) lines indicate positive (resp.,

negative) values.

Λ〈G〉∗ =
√
Λ, as 〈G〉∗ ≃ 1/

√
Λ. In the slow gene limit (ρ ≪ 1) the averages, covariances

and third-order joint cumulants can be computed because all variables are slaved to the

gene state variable. In particular, the values of P and U alternate between 0 when the

gene is off and Λ when the gene is on. In normalized time units, the gene is active during
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a time tON = 1/Λ and inactive during a time tOFF = 1 so that its average activity is

G∗ = tON/(tON + tOFF ) = 1/(1 + Λ) and P ∗ = U∗ = ΛG∗ = Λ/(1 + Λ) ≈ 1. Because

P and U can be assumed to have a constant value of Λ during the phase where G = 1, it

follows that 〈GUP 〉ρ→0 = 〈GP 2〉ρ→0 = Λ〈G〉∗ = 1
Λ
. Finally, we get 〈GUP 〉 = 〈GP 2〉 = 1

〈G〉

in the two limits. We then seek to express 〈GUP 〉 and 〈GP 2〉 in terms of the same function

depending on 〈G〉 only :

〈GUP 〉 = 〈GP 2〉 = F (〈G〉) .

The moment expansion (S7) then reduces to a five dimensional ODE system:

d

dT
〈P 〉 = η [〈U〉 − 〈P 〉] ; (S16a)

d

dT
〈U〉 = Λ〈G〉 − 〈P 〉; (S16b)

d

dT
〈G〉 = ρ (1− 〈G〉 − 〈GP 〉) ; (S16c)

d

dT
〈GU〉 = Λ〈G〉 − 〈GP 〉 − ρ [F (〈G〉) + 〈GU〉 − 〈U〉] ; (S16d)

d

dT
〈GP 〉 = η [〈GU〉 − 〈GP 〉]− ρ [F (〈G〉) + 〈GP 〉 − 〈P 〉] . (S16e)

The fixed point of Eqs. (S16) is obtained by solving

− (Λ + 1) 〈G〉∗ + 1 +
ρ (η + ρ)

ρ (η + ρ) + η
F (〈G〉∗) = 0. (S17)

Requesting that the solution of Eq. (S17) in the limit of fast gene (ρ ≫ 1) coincides with

the stationary state of the rate equation (S9) allows one to obtain the asymptotic form of

the unknown function F :

lim
ρ→∞

F (〈G〉) = F∞ (〈G〉) = (1− 〈G〉)2
〈G〉 .

By extending this asymptotic form to the whole ρ axis and fixing

F (〈G〉) = (1− 〈G〉)2
〈G〉 ,

an alternate moment-closure model is obtained, which we term the Truncated Moment

Expansion (TME) model. Its fixed point describe well the stationary values of the averages

(see main text).

The third column of Fig S1 displays the fixed points of the TME model recast in terms

of averages and covariances of the natural rescaled variables G, M , and P , so as to allow
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comparison with the fixed points of the TOT model and provide information which is com-

plementary to that of Fig 3. The absence of an overshoot in the averages near ρ = 1 is

correlated with the fact that ∆GP does not change its sign as rho increases.

S.F. STABILITY ANALYSIS

Figure (S3) compares the parameter space regions where TOT and TME models oscillate,

as indicated by a numerical stability analysis. In the slow gene regime (ρ → 0), the two

models display similar behavior, as could be expected from the fact that the closure approx-

imations are consistent in this case. Similarly, none of the two models displays oscillations

in the large ρ limit.

FIG. S3. Comparison between TOT and TME models oscillatory domain. The lines

enclose the region where the TOT model (thin lines) and the TME model (thick lines) oscillate for

various Λ (see legend box for color code).. The analytical expression of the two boundaries derived

for Λ ≫ 1 are ρ = η/Λ (dashed lines) and η2 − 2ρ3 − 2ηρ2 − ηρ = 0 (black line), with η = (1+δ)2

δ

(see Sec. S.H).
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However, the oscillation region of the TOT model is much narrower and moreover, is

clearly disconnected from the (ρ = 1, δ = 1) central point where the regular stochastic

oscillations are preferentially observed. This suggests that the third-order cumulants play

an important role in the dynamics, in accordance with their importance in the equations

describing the time evolution of covariances involving the gene state (Fig. (S2)).

S.G. ANALYSIS OF THE LOW-PASS FILTER : CUT-OFF FREQUENCY AND

FEEDBACK DELAY

In the infinite volume limit, Eqs. (2a-b) describing the time evolution of the averages of

mRNA and protein concentrations are linear and do not depend on higher-order moments.

Assume that mRNA and protein concentrations respond to gene activity considered as an

external signal. The two equations

d

dt
〈P〉(t) = β 〈M〉(t)− δp 〈P〉(t); (S18a)

d

dt
〈M〉(t) = α 〈g〉(t)− δm 〈M〉(t). (S18b)

can be viewed as describing a low-pass filter, whose dynamics is easily characterized. If we

denote by 〈g〉(ω) and 〈P〉(ω) the Fourier transforms of the input 〈g〉(t) and output 〈P〉(t)
of the low-pass filter, then the transfer function is given by

F (ω) =
〈P〉(ω)
〈g〉(ω) =

αβ

δpδm − ω2 + iω (δp + δm)
. (S19)

The cut-off frequency Ωc, defined by |F (ω = Ωc)|2 = 1
2
|F (ω = 0)|2, characterizes the spec-

tral interval in the input which is transmitted to output. More precisely, a sinusoidal input

of frequency Ωc and amplitude A induces a sinusoidal output of amplitude A/
√
2. The

expression of the cut-off frequency Ωc is

Ωc = ωc

√

η2 − 2η

2

√

√

√

√

√

1 +
4

(η − 2)2
− 1, (S20)

where ωc =
δpδm
δp+δm

and η = (δp+δm)2

δpδm
. Ωc/ωc varies between 2

√√
2− 1 ≈ 1.29 when η = 4 and

1 when η is large. Thus ωc provides a good approximation of Ωc (whose definition involves

itself an arbitrary choice) and characterizes the relevant time scale.
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If we rescale frequency with respect to ωc by defining ω = ω′ωc, the transfer function

reads

F (ω′) =
K

η − ω′2 + iω′η
, (S21)

whereK is a constant. This corresponds to the time rescaling that we use in model derivation

and which are defined Eqs. (S5).

The low-pass filter, as any linear system, is fully characterized by its impulse response,

computed as the inverse Fourier transform of the transfer function Eq. (S21). The impulse

response represents the protein time profile created by an infinitely short pulse of gene

activity at time 0 :

PIR(T ) ∝
2η

√

η2 − 4η
sinh

(

1

2

√

η2 − 4η T

)

e−
1

2
ηT T ≥ 0. (S22)

The impulse response displays a maximum at T = Tm, where Tm depends on η only:

Tm =
log

(

√

η2 − 4η + η
)

− log
(

−
√

η2 − 4η + η
)

√

η2 − 4η
. (S23)

The value of Tm, which corresponds to the delay between gene activity pulse and maximum

protein concentration, decreases monotonously from its maximum value of 0.5 for η = 4 to

0 for large η (Fig. S4).

Assuming that the sum of mRNA and protein half-lives is fixed, the case of balanced

half-lives (η = 4, δ = 1) implies then a longer delay in the negative feedback loop.

S.H. LINEAR STABILITY ANALYSIS OF THE TME MODEL

The linear stability analysis characterizes the qualitative behavior of the trajectories of

a dynamical system near a fixed point by examining the eigenvalues of the Jacobian matrix

evaluated at the fixed point. If all eigenvalues have negative real parts, the fixed point is

stable.

When the real part of a pair of complex conjugate eigenvalues crosses zero from negative

to positive, the fixed point becomes unstable and generically gives birth to a limit cycle, as-

sociated with appearance of spontaneous oscillations (Hopf bifurcation) [4]. The occurrence

of such a bifurcation can be investigated using the Routh-Hurwitz criterion [5, 6] without

having to compute the actual eigenvalues. The Routh-Hurwitz criterion provides one with
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FIG. S4. Impulse response of the low pass filter. The protein concentration time profile in

response to an impulse gene signal displays a maximum around a time Tm, whose dependence on

η is shown in the insert.

a set of functions of the coefficients of the characteristic polynomial, which are all negative

when the fixed point is stable. One of these functions go through zero at a Hopf bifurcation,

and thus can be used as a criterion for the appearance of oscillations.

The dynamical properties of the TME model is governed by Eqs. (5a-e) of the main text.

The Jacobian matrix evaluated at the fixed point reads

J =





















−η η 0 0 0

−1 0 Λ 0 0

0 0 −ρ 0 −ρ

0 ρ Λ− ρD −ρ −1

ρ 0 −ρD η −η − ρ





















, (S24)

where D = D(〈G〉∗) = D(ρ, η,Λ) = dF (X)/dX|X=〈G〉∗ is the derivative of the function F

used in the closure approximation 〈GUP 〉 = 〈GP 2〉 = F (〈G〉).
The analysis of the Routh Table computed using the characteristic polynomial of the

Jacobian (S24) leads to an oscillation criterion H′(ρ, η,Λ) with a complicated expression,

however the analysis of its structure reveals that

H(ρ, η,Λ) = ρ3 (8− 2D(ρ, η,Λ)) + 8ηρ2 + ρη (2η + 2− Λ) + η2 < 0 (S25)
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is a sufficient condition for the occurrence of spontaneous oscillations. Indeed, the Routh-

Hurwitz criterion can be decomposed as H′ = A×H−B < 0 where A and B are two strictly

positive functions of ρ, η, and Λ, and thus cannot become positive if H is not positive. In

practice, numerical simulations show that H = 0 delimitates very accurately the oscillation

region in parameter space (see Fig. 5 in main Text).

Interestingly, H < 0 corresponds to the stability criterion of the approximated Jacobian

J ′ =





















−η η 0 0 0

−1 0 Λ 0 0

0 0 −ρ 0 −ρ

0 0 Λ− ρD −ρ −1

0 0 −ρD η −η − ρ





















. (S26)

where the leftmost entries on fourth and fifth row have been set to zero.

With the closure F (X) = (1−X)2

X
used in the main Text, we have D(X) = 1− 1

X2 and the

oscillation criterion reads

H(ρ, η,Λ) = ρ3
(

6 +
2

〈G〉∗2
)

+ 8ηρ2 + ρη (2η + 2− Λ) + η2 < 0. (S27)

where 〈G〉∗ = 〈G〉∗(ρ, η,Λ) is given by expression (6) in the main Text.

Because the derivative of the closure function appears in the coefficient of ρ3, the location

of the oscillation region will typically be very sensitive to the choice of the closure function,

especially in the region around ρ = 1, where the more regular stochastic oscillations are

observed, and even more for larger values of ρ. This probably explains why the agreement

between the instability region of the TME model and the region where regular stochastic

oscillations are observed is not very good for ρ > 1.

A even simpler oscillation criterion can be obtained in the limit of strong feedback, when

Λ → ∞, without having to approximate the Routh-Hurwitz criterion. In this limit, we have

to consider two cases depending on the value of ρ.

If ρ is O(1), then the fixed point of the TME model is determined to leading order in

1/Λ by

< G >∗=

√

ρ (η + ρ)

ρ (η + ρ) + η

√

1

Λ
(S28)

If, however, ρ is sufficiently small that it can be written ρ = K
Λ

with K = O(1), then the

15



leading order solution of the TME fixed point equations is

< G >∗=
1 +

√
1 + 4K

2

1

Λ
(S29)

Note that the average gene activity scales differently with Λ in Eqs. (S28) and (S29).

To obtain the oscillation criterion in the limit of large Λ, we substitute expressions (S28)

and (S29) in the Jacobian (S24) and compute the Hopf Routh-Hurwitz criterion to leading

order in Λ, which considerably simplifies the expression.

We thus find that oscillations occur whenever

−2 ρ2η − 2 ρ3 + η2 − ρ η > 0, [ρ = O(1)] (S30)

if the gene response time is similar to degradation rates, or when

ρ >
η

Λ
[ρ = O(1/Λ)]. (S31)

when the gene response time is large. Note that Eq. (S31) confirms that oscillations appear

for very small ρ in the limit of large Λ, and also that it is consistent with the assumed

scaling.

In spite of their simplicity, the two expressions provide excellent approximations of the

two boundaries of the instability region when Λ is large, as can be seen in Fig. S3. This

allows one to discuss the relative influences of gene response time (described by ρ) and

degradation rate balance (described by η) on the appearance of oscillations.

Interestingly, the conditions (S31) and (S30) can also be recovered by injecting expres-

sions (S28) and (S29) in the approximate criterion (S27), showing that the latter is all the

more accurate as Λ is large.
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