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Stochastic Oscillations Induced by Intrinsic Fluctuations in a
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ABSTRACT Biochemical reaction networks are subjected to large fluctuations attributable to small molecule numbers, yet
underlie reliable biological functions. Thus, it is important to understand how regularity can emerge from noise. Here, we study
the stochastic dynamics of a self-repressing gene with arbitrarily long or short response time. We find that when the mRNA and
protein half-lives are approximately equal to the gene response time, fluctuations can induce relatively regular oscillations in the
protein concentration. To gain insight into this phenomenon at the crossroads of determinism and stochasticity, we use an in-
termediate theoretical approach, based on a moment-closure approximation of the master equation, which allows us to take into
account the binary character of gene activity. We thereby obtain differential equations that describe how nonlinearity can feed-
back fluctuations into the mean-field equations to trigger oscillations. Finally, our results suggest that the self-repressing Hes1
gene circuit exploits this phenomenon to generate robust oscillations, inasmuch as its time constants satisfy precisely the con-
ditions we have identified.
INTRODUCTION
Most cellular functions are controlled by molecular net-
works involving genes and proteins that regulate each other
so as to generate the adequate dynamical behavior. A major
goal of systems biology is to understand how sophisticated
functional modules emerge from the combination of
elementary processes such as transcriptional regulation,
complex degradation, active transport,. and how each of
these processes influences the collective dynamics (1).

A specificity of regulatory networks viewed as dynamical
systems is that they are both strongly nonlinear and inher-
ently stochastic, which considerably complicates the math-
ematical analysis. In a cell, protein and mRNA molecules
are often found in low abundance so that variations of their
copy numbers by one unit represent significant fluctuations.
Furthermore, there are generally very few copies of a gene-
carrying DNA fragment, with only a few possible con-
figurations depending on promoter occupancy. When its
transcription is regulated by a single protein, a gene can
essentially be in two states: free, or bound to its transcrip-
tion factor. Gene activity is then described mathematically
by a binary variable, which more generally can also account
for the transcriptional pulsing that has been observed both in
prokaryotes (2) and eukaryotes (3–6). The stochastic dy-
namics of the gene randomly flipping between the bound
and free states with probabilities depending on transcription
factor abundance is a major source of intrinsic fluctuations,
all the more as it was shown that this flipping can occur at
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timescales that are comparable to other biochemical pro-
cesses (2). Although stochasticity in gene networks has
been often viewed as an undesirable perturbation blurring
deterministic behavior, it is increasingly recognized that
noise can in fact be harnessed to become a functional
component of a regulatory network and make its dynamics
richer (7–11). It is thus important to understand how the
deterministic and stochastic aspects of cellular processes
interact and contribute to the same global dynamics, all
the more because they are intimately coupled in nonlinear
systems.

However, even moderately complex regulatory networks
resist mathematical analysis and require formidable compu-
tational resources. A natural strategy to study such general
questions as the interplay of dynamics and noise, is to focus
on small genetic networks comprising only a few elemen-
tary components, the analysis of which can identify the
key mechanisms and parameters and cast light on the dy-
namics of more complex networks. This approach is all
the more valuable because the recent developments of syn-
thetic biology allow experimental tests of the theoretical an-
alyses (12).

Here, we study how stochastic fluctuations in gene activ-
ity feed-back into the deterministic dynamics of the smallest
genetic network, which consists of a single gene repressed
by its own protein product. This system is an ideal work-
bench to investigate how the dynamics of the network
emerges from the properties of its elementary components.
In fact, this motif is very common in transcriptional net-
works and is thus biologically relevant (~40% of Escheri-
chia coli transcription factors are self-repressing (13–15)).
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FIGURE 1 Schematic view of the self-repressing gene network. (A)

Biochemical reactions composing the network. P, M, G, and G:P denote

protein, mRNA, free gene, and bound gene chemical species, respectively.

The kinetic constants of the reactions are indicated, with U denoting cell

volume. In the limit where U is large, the mRNA and protein copy numbers

become macroscopic variables, with decreasing fluctuations; this is in

comparison to the gene state, which remains microscopic and displays

full-scale variations. (B) Block diagram representation of the network,

consisting of a random telegraph signal generator representing the gene

state-flip dynamics, and of a low-pass filter of cut-off frequency uc repre-

senting proteins and mRNA dynamics. The telegraph signal regulates its

frequency and duty cycle through feedback from the low-pass filter.
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Self-repression is known to be an important ingredient for
generating oscillatory behavior (16). For instance, Hirata
et al. (17) proposed that the somite clock network is gov-
erned by the self-repressing geneHes1. Accordingly, the dy-
namics of the self-repressing gene has been actively
investigated throughout mathematical biology (18–26).

Most theoretical analyses of the self-repressing gene
based on a deterministic description assume that gene-state
flipping occurs on much faster timescales than other pro-
cesses such as transcription, translation, and degradation.
The flipping dynamics can then be taken into account
through an average activity, which adapts to protein concen-
tration either instantaneously or after a time delay. If
intrinsic fluctuations are neglected, the analysis of the rate
equations reveals that oscillatory behavior can only be
found by one of the following:

1. Introducing an explicit time delay in the equations (e.g.,
to take into account the transcriptional dynamics (16,23–
25,27,28));

2. Inducing an implicit time delay via a reactional step,
which can be intrinsic (20) or describe transport between
two compartments (22); and

3. Incorporating complex degradation mechanisms
(16,26,28,29).

However, experiments have shown that gene activity may
display an intrinsic dynamics on timescales comparable to
that of other cellular processes (2,4–6). This may be taken
into account in a deterministic model by introducing an
average gene activity variable, which reacts gradually to
protein concentration (30). In particular, how such a tran-
scriptional delay and a nonlinear degradation mechanism
conspire to generate oscillations has been studied in detail
by Morant et al. (26), who obtained analytical expressions
for the instability thresholds.

To take into account the binary nature of the gene state
and its stochasticity, the most general approach to study
the dynamics of the self-repressing gene is to use the chem-
ical master equation (CME) (31). The steady-state solution
of the CME provides the probability distribution of molec-
ular copy numbers, characterizing both the averages and
the fluctuations around them. An analytical solution of the
CME for the self-repressing gene can be obtained when
the mRNAvariable is considered to be fast and can be elim-
inated adiabatically (32,33), but this assumption is unrealis-
tic for the Hes1 feedback network, where mRNA and
protein have similar lifetimes (17). A classical strategy for
approximating the CME is the system-size expansion also
known as van Kampen’s U-expansion (31). Assuming that
the system size is large but not infinite, the solution is
expanded in powers of the inverse system size. The deter-
ministic mean-field equations are obtained at lowest order
while next-to-leading order corrections determine finite-
size fluctuations in the so-called linear noise approximation
(LNA).
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This approach can be used to estimate the amplitude of
fluctuations (34) but also to determine their spectrum. In
particular, the LNA has been useful to characterize the
appearance of stochastic oscillations in parameter regions
where the mean-field equations predict stable steady
behavior (35,36) or to verify that oscillations predicted by
a deterministic modeling persist in presence of fluctuations
(37)—two problems that have been actively studied (38–
41). To overcome the fact that LNA does not allow one to
determine precisely when the steady state loses stability,
Scott et al. (42) proposed an extension of this method,
one that takes into account how fluctuations modify the
linearized dynamics around steady state and allows one to
study how bifurcation diagrams are modified by noise.
However, all these methods based on system size expansion
assume that fluctuations vanish in the infinite size limit,
without affecting the average values. This assumption
clearly does not hold when the gene state is a binary vari-
able, which fluctuates between two discrete values, regard-
less of system size. A different approach must then be
taken.

In this article, we propose a strategy to describe the
stochastic dynamics of a basic self-repressing gene circuit,
with no cooperativity in the transcriptional regulation
and a linear degradation mechanism (Fig. 1 A). The gene
switches stochastically between the active and inactive
state, so that this circuit can be viewed as a random tele-
graph signal generator, whose output is sent through a



Stochastic Oscillations Induced by Intrinsic Fluctuations 2405
low-pass filter before being fed back to itself (Fig. 1 B). It is
well known that a mean-field model of this system is uncon-
ditionally stable (see, e.g., Morant et al. (26)). Our main
result is that a low-dimensional model taking fluctuations
into account predicts oscillatory behavior in a region of
parameter space, where we observe relatively regular
spiking in protein concentration.

To derive this model, we use a moment-closure approx-
imation of the master equation (33,43–45), and derive a set
of ordinary differential equations (ODEs) that generalize
the usual mean-field description while taking into account
the binary nature of the gene state variable. These equa-
tions describe the combined time evolution of average
quantities and of fluctuations around them. They reproduce
accurately the stationary state values of the dynamical vari-
ables and predict the appearance of oscillations, without
any assumption on the gene switch timescale or on the sta-
tistical distribution of random variables. We then explain
the appearance of stochastic oscillations by a resonance ef-
fect between the characteristic timescales of the stochastic
network and derive an analytical criterion for their appear-
ance. Finally, the parameter values relevant for the Hes1
network suggest that the mechanism we describe may be
exploited to generate robust oscillations in Hes1 expres-
sion. Our findings highlight the functional role of intrinsic
fluctuations arising from the gene-state flip dynamics as an
important ingredient for shaping the dynamics of genetic
networks.
METHODS

To assess the validity of moment-closure approximations of the CMEs,

we performed numerical stochastic simulations of the chemical network

of Fig. 1 A for various values of the reduced parameters r, L, and

d (see Results). The stochastic simulations were performed using an

implementation of the next reaction method (Gibson-Bruck algorithm

(46)). The integration time used for numerical estimation of moments

was chosen to ensure a relative error of the average gene activity estimator

smaller than 10�4, by monitoring the convergence of the estimator and

its fluctuations. To estimate the Fano factor quantifying the regularity of

protein spikes, we recorded 4000 interspike intervals, after a transient

whose duration was chosen by monitoring the convergence of the esti-

mator for the gene average activity.

To obtain a one-to-one correspondence between the original parameter

space {kon, koff, b, a, dm, dp} and the reduced parameter space {r, L, h},

three constraints are required. Thus, we fixed the following:

1. The ratio b/dp¼ 10 to enforce a protein/mRNA concentration ratio of 10,

which is a realistic assumption for a biological network;

2. The gene repression thresholdUkoff/kon¼ 100, to keep computation time

within reasonable limits while being consistent with the assumption of

infinite cell volume;

3. dm ¼ 1 to set the timescale to the mRNA half-life; and

4. Because stochastic simulations deal with copy numbers instead of

concentration, the cell volume has no influence, and we fixed U ¼ 1.

The validity of the truncation schemes investigated can then be assessed

by comparing the values of the averages in the stochastic simulation with

the fixed point values of the ODE models obtained by truncating the

moment expansion.
RESULTS

Corrections to the rate equation

Three stochastic variables characterize the network dynam-
ical state: the gene state g, the mRNA copy number m, and
the protein copy number p. The time evolution of the prob-
abilities Pg,m,p of being in a state with given values of g, m,
and p is given by the following CME:

d

dt
Pg;m;p ¼ ð�1Þg

�
kon
U

ðpþ 1� gÞ P1;m;pþ1�g � koff P0;m;p�g

�
þ dg;1aU

�
Pg;m�1;p � Pg;m;p

�þ bm
�
Pg;m;p�1

� Pg;m;p

�þ dm
�ðmþ 1ÞPg;mþ1;p � mPg;m;p

�
þ dp

�ðpþ 1Þ Pg;m;pþ1 � p Pg;m;p

�
;

(1)

which can be read from Fig. 1 A and provides the most gen-
eral description of the dynamics. The parameters kon and koff
characterize the kinetics of protein-DNA binding and un-
binding, respectively. The transcription rate and translation
rate are a/U and b, where U represents the cell volume,
and dm and dp values are the mRNA and protein degradation
rates. The equations are normalized so that in the large vol-
ume limit, the average gene activity hgi and average concen-
trations hmi/U and hpi/U become independent of U.

Unfortunately, the master equation has generally no
analytical solution. Contrary to the mRNA and protein
copy numbers, which become much larger than 1 in the
large volume limit and have then negligible fluctuations
when a single molecule is created or destroyed, the gene
state is a binary variable and its relative jump size does
not decrease. Therefore, the standard approximation method
based on the large-volume expansion of the master equation
with the van Kampen ansatz fails (31). Alternatively, the
CME can be reformulated as an infinite hierarchy of coupled
differential equations whose variables are the moments of
the random variables g, m, and p (31). This strategy leads
to deterministic differential equations taking the fluctuations
into account and having the mean-field rate equations as a
limiting case.

To be specific, let us consider the equations describing the
time evolution of the averages of gene activity and mRNA
and protein concentrations in the infinite volume limit,

d

dt
hPi ¼ bhMi � dphPi; (2a)

d

dt
hMi ¼ ahgi � dmhMi; (2b)

d

dt
hgi ¼ koff ½1� hgi� � kon½hgPi�;

¼ koff ½1� hgi� � kon½hgihPi þ covðg;PÞ�;
(2c)
Biophysical Journal 107(10) 2403–2416
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whereM (respectively,P) denotes the mRNA (respectively,
protein) concentration m/U (respectively, p/U),

hxi ¼
X
g;m;p

xPg;m;p

is the average of the stochastic variable x and cov(x,y) ¼
hxyi – hxihyi is the covariance of x and y. These equations

are derived by following the approach described in the Sup-
porting Material. Because of the nonlinear term associated
with DNA-protein binding in Eq. 2c, this equation can
only be reformulated in terms of the average values hxi by
introducing the covariance term cov(g, P). This term does
not appear in the usual rate equations describing the
kinetics of the self-repressing gene. It describes the feed-
back from stochastic fluctuations into the dynamics of
the average values and plays therefore a key role to model
the influence of the gene-state flip dynamics. Equations 2,
a–c, also indicate that the dynamics of mRNA and proteins
behaves as a low-pass filter whose input is the mean gene
state hgi and output is the mean protein concentration hPi.
The cutoff frequency of this low-pass filter depends only
on mRNA and protein degradation rates, and is well approx-
imated by

uc ¼ dmdp

dm þ dp

(see the Supporting Material).

Equations 2, a–c, are only the first of an infinite hierarchy

of equations where time derivatives of the first raw moments
(the averages) are expressed in terms of the first and second
raw moments, the time derivatives of second raw moments
are expressed in terms of second and third raw moments,
and so on (see the Supporting Material). To truncate this in-
finite hierarchy to a finite set of equations, a closure approx-
imation must be used. For instance, the usual rate equations
are obtained when infinite cell volume and vanishing covari-
ances are assumed (i.e., the cov(g, P) term in Eqs. 2, a–c, is
set to 0). The approximation neglects all fluctuations and as-
sumes that all variables have precise values, which conflicts
with the binary nature of the gene state.

Here, we derive and analyze a higher-order model by us-
ing a closure approximation of the moment expansion hier-
archy in the limit of an infinite cell volume. In this limit,
protein and mRNA copy numbers are also infinite and
thus their variation by one unit is negligible, whereas the
gene state is a binary variable, whose time evolution is
similar to a random telegraph signal. Then the only remain-
ing fluctuations in the models are those induced by the gene-
flipping dynamics.

The moment expansion equations up to order 2 are most
conveniently expressed in terms of g, p, and of a new vari-
able u ¼ (bm þ dmp)/(dp þ dm), after suitable rescaling
(see the Supporting Material for a detailed derivation).
More precisely, the equations read
Biophysical Journal 107(10) 2403–2416
d

dT
hPi ¼ h½hUi � hPi�; (3a)

d hUi ¼ LhGi � hPi; (3b)

dT

d hGi ¼ rð1� hGi � hGPiÞ; (3c)

dT

d hGUi ¼ LhGi � hGPi � r½hGUPi þ hGUi � hUi�;

dT

(3d)

d hGPi ¼ h½hGUi � hGPi� � r
�hGPi2 þ hGPi � hPi�;
dT
(3e)

d �
U2

� ¼ 2½LhGUi � hPUi�; (3f)

dT

d �
P2
� ¼ 2h

�hPUi � �
P2
��
; (3g)
dT

d hUPi ¼ LhGPi � �
P2
�þ h

��
U2

�� hPUi�; (3h)

dT

where P,U, andG are rescaled concentrations of the random

variables p, u, and g, and T is a rescaled time. The three con-
trol parameters h,L, and r are defined below. The key point
is that Eqs. 3, a–h, are not closed, because Eqs. 3, d and e,
depend on third-order moments hGUPi and hGP2i, respec-
tively, whose time evolution is unknown.
The dynamics is controlled by three key
parameters

The biochemical reaction network of the self-repressing
gene (Fig. 1 A) has six independent kinetic parameters.
Three parameter combinations represent scales and thus
can be taken out of the equations by rescaling time as
well as mRNA and protein concentrations. These are koff/
kon, which is the protein concentration at which the gene
is half-repressed;

dpkoff
bkon

;

which is the mRNA concentration corresponding to half-
repression in steady state; and

dm þ dp

dmdp
;

which is the response time of the low-pass filter. There
remain three reduced parameters, denoted below by r, L,
and h, which control the dynamics, and are discussed below.
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The first reduced parameter

L ¼ abkon
dmdpkoff

corresponds to the maximum possible protein concentra-
tion relative to the half-repression protein concentration
threshold koff/kon. Dynamically, L characterizes the amplifi-
cation of the gene telegraph signal sent to the low pass-filter.
A low value of L(L << 1) indicates that the gene remains
unbound most of the time; the average period of one gene
on/off cycle is essentially the on-state duration ton. On the
contrary, a high value of L(L >> 1) indicates that the
gene is repressed most of the time; the period of the gene
on/off cycle is essentially the off-state duration toff, gov-
erned by koff. Thus, L can also be viewed as characterizing
the strength of the feedback from the gene to itself via its
protein product.

The second parameter

r ¼ koff

�
dm þ dp

	
dpdm

measures the gene unbinding rate relative to the cutoff fre-
quency of the low-pass filter. A low value of r indicates
that the low-pass filter transmits all the fluctuations of the
gene state: the protein concentration time profile displays
square waveforms enslaved to the gene flip. By contrast, a
high value of r corresponds to the case where the low-
pass filter averages out the gene-flip dynamics: protein con-
centration evolves with small amplitude fluctuations around
its mean value.

The third parameter

h ¼
�
dm þ dp

	2
dpdm

characterizes whether the protein and mRNA degradation

rates are balanced or not. This indicator reaches a minimum
value of 4 for equal degradation rates (dm ¼ dp) and in-
creases to infinity inasmuch as one of the degradation rates
becomes negligible compared to the other. It is worth noting
that the expressions of all key parameters r, L, and h are
symmetric with respect to exchange of dm and dp. As a
consequence, the dynamical properties are unchanged if
the mRNA and protein degradation rates are swapped, a
fact which was already noted in Morant et al. (26). To distin-
guish the two regimes that have identical r,L, and h param-
eter values but different values of dm and dp, we will later
consider the ratio of protein and mRNA degradation rates
d ¼ dp/dm, with h ¼ (1 þ d)2/d. Obviously, the value of h
is unchanged under the transformation d 4 1/d.

In the fast and slow gene limits, asymptotic expressions of
the averages are obtained from the fixed point of Eqs. 3, a–h,
regardless of how they are closed. In particular, hUi ¼ hPi ¼
LhGi in all cases. The value of hGi depends on the gene
response timescale. In the fast gene regime (r / N), it is
determined by equating expression (Eq. 3c) to zero, whose
solution satisfies hGi � 1=

ffiffiffiffi
L

p
in the limit of strong feed-

back (large L). In the slow gene limit (r / 0), one has
hGPi ¼ hPi (expressing the fact that protein concentration
quickly relaxes to 0 when the gene is off), so that equating
Eq. 3c to zero now leads to hGi ~ 1/L for strong feedback.
The dramatic decrease in gene average activity is related to
the longer memory of the gene, which remains off for longer
times after the repressor has disappeared.

Simple considerations also allow us to obtain the asymp-
totic behavior of the two third-order moments appearing
in Eqs. 3, a–h. In the fast gene limit, the protein and
mRNA can be considered as constant so that hGUPi ¼
hGihUihPi ~

ffiffiffiffi
L

p � 1=hGi. In the slow gene limit, hUi
and hPi quickly relax to their equilibrium value L when
the gene switches on, so that hGUPi ¼ hUPiG¼1 ~ L2hGi
~ L and thus that hGUPi ~ 1/hGi again. Similarly, one finds
that hGP2i ~ 1/hGi in both limits.
Truncation of the moment equations

A natural closure approximation, which is described in
detail in the Supporting Material, would be to assume
vanishing third-order central moments h(G� hGi)(U� hUi)
(P � hPi)i and h(G � hGi)(P � hPi)2i. The resulting model
is eight-dimensional, incorporating three averages and five
covariances as dynamical variables. Note that because not
all third-order central moments are constrained to zero,
this is a weaker requirement than assuming that variables
are Gaussian-distributed. The predictions of this model are
exact when the gene is either infinitely fast or slow.

Here, we focus on another closure approximation, which
leads to a simpler yet accurate model. It assumes that the
two unknown third-order moments are slaved to the gene
state according to

hGUPi ¼ �
GP2

� ¼ ð1� hGiÞ2
hGi : (4)

This relation is obtained by requiring that, in the limit of
strong feedback (large L),
1. It matches the slow-gene and fast-gene asymptotic be-
haviors of the two moments, as obtained in previous sec-
tion; and

2. The fixed point of the resulting equations agrees with that
of the rate equations in the fast gene limit (see the Sup-
porting Material).

Using stochastic numerical simulations, we also checked
that it is relatively well satisfied for all intermediate gene
response timescales, as will be shown in next section.

When rewritten using Eq. 4, Eqs. 3, a–e, decouple from
the others and form a closed system of only five differential
Biophysical Journal 107(10) 2403–2416
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equations, named thereafter the truncated moment expan-
sion (TME) model, which read:

d

dT
hPi ¼ h½hUi � hPi�; (5a)

d hUi ¼ LhGi � hPi; (5b)
B

dT

d hGi ¼ rð1� hGi � hGPiÞ; (5c)

dT

d
"
ð1� hGiÞ2

#

C

dT
hGUi ¼ LhGi�hGPi�r hGi þ hGUi�hUi ;

(5d)

d
"
ð1� hGiÞ2

#

FIGURE 2 Level sets of average gene activities in the (r, l) parameter

plane. (A) Numerical estimation of hgi using stochastic simulations with

parameter values koff/kon¼ 100, d¼ 1, b/dp¼ 10. (B) Average gene activity

predicted by rate equation. (C) Fixed point value of gene activity in the

TME model.
dT
hGPi ¼ h½hGUi�hGPi��r hGi þhGPi � hPi :

(5e)

This model predicts the time evolution of the three averages
and of the two moments involving the gene state (hGUi
and hGPi). This is consistent with the fact that only the
gene-state fluctuations survive in the infinite volume limit.
The TME model thus provides a minimal extension of
the rate equations, allowing us to describe the stochastic
dynamics of the network, including the stationary state
average values, and thus to study the impact of the gene
state fluctuations.
The truncated moment expansion reproduces
well the time averages of the stochastic dynamics

To assess the influence of stochastic fluctuations of the gene
state on the dynamics of the self-repressing gene, we per-
formed stochastic numerical simulations to determine the
values of the time averages and covariances of the rescaled
random variablesG,M, and P (see Methods) as a function of
the control parameters. These time averages were then
compared to the fixed point values of two truncations of
the moment equation hierarchy: the rate equation model,
defined by Eqs. 2, a–c, with the covariance term set to
zero; and the TME model defined by Eqs. 5, a–e. These
models are defined by sets of ODEs, whose fixed points
are specified by the values of the variables such that all
time derivatives are zero. These fixed points are usually sta-
ble and thus reflect the stationary regime; however, we shall
see later that they may become unstable in some conditions,
indicating the appearance of spontaneous oscillations.

Let us examine how the average gene activity depends on
r, which characterizes the gene response timescale, and L,
which characterizes feedback strength, when protein and
mRNA lifetimes are identical (d¼ 1). Gene average activity
as determined by stochastic simulations is shown in Fig. 2 A.
Biophysical Journal 107(10) 2403–2416
The rate equation model correctly predicts the output of
stochastic simulations only when gene dynamics is fast
(r / N) or when the gene repression is small (L << 1)
(Fig. 2 B). In contrast to this, the TME model predicts quan-
titatively gene average activity in the entire (r, L) plane
(Fig. 2 C), in particular in regions where the rate equation
approximation fails.

A more detailed assessment of the TME model accuracy
is provided in Fig. 3, which shows how the time averages of
G, U, and P, and their products evolve with r and d, depend-
ing on whether they are computed from stochastic simula-
tions (Fig. 3, left column) or from the fixed point values of
the TME model (Fig. 3, right column). The computations
are carried out in the strong feedback (i.e., high repression)
limit (L ¼ 100). Note that in the rate equation approxima-
tion, all averages would be constant and the covariances
would vanish. Fig. 3 displays only a subset of components
of the TME model fixed point, from which the other can
be obtained using the relations hMi* ¼ hPi* ¼ LhGi*,
hGPi* ¼ 1 � hGi*, and hP2i* ¼ hPUi* ¼ LhGUi*.
An important finding is that r is the main parameter control-
ling the averages of the stochastic variables G, U, and
P, inasmuch as the curves obtained for various values of
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FIGURE 3 Comparison of raw moments obtained from stochastic simu-

lations (left column) and from the TME model (right column) as functions

of parameter r, and for various values of d. (A) Average gene activity hGi.
(B and C) Second raw moments hGMi and hP2i. (D and E) Third raw mo-

ments hGUPi and hGP2i. Curves for different values of d are color-coded

according to legend box. The value of L ¼ 100 used in the simulations

corresponds to strong feedback (strong gene repression). Stochastic simula-

tions are performed while constraining koff/kon ¼ 100 and b/dp ¼ 10

(see Methods for details). To see this figure in color, go online.
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d superimpose remarkably well (Fig. 3 A, left column). As
expected, using the variable U leads to numerical results
which are symmetrical with respect to the d 4 1/
d inversion.

Fig. 3 shows that the fixed point values of the TME model
are in very good quantitative agreement with the numerical
estimators. However, the stochastic estimators of the aver-
ages display an overshoot for r close to 1, which is empha-
sized when h is small (Fig. 3 A). This behavior is not
recovered by the TME model, which predicts that averages
increase monotonously with r. More precisely, the averages
in the TME model are specified by

hGi� ¼ 2k� 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Lð1� kÞp

2ðLþ kÞ ; (6)
where

k ¼ h

rðhþ rÞ þ h
˛½0; 1�:

Presumably, this discrepancy could be resolved with a better
closure approximation. The global evolution of the second

raw moments is also well reproduced, even though the
TME model overestimates the moments hGMi* and hP2i*
(Fig. 3, B and C) for high values of r. The left column of
Fig. 3, D and E, displays how hGUPi* and hGP2i* vary
with r and d, in good agreement with the closure assumption
(4) (Fig. 3 D, right column). Although discrepancies are
slightly more pronounced for hGUPi*, Fig. 3, D and E,
supports the assumption that the two third-order raw mo-
ments have equal values. In comparison, the model obtained
by assuming vanishing third-order central moments also
correctly predicts stationary values and captures more pre-
cisely the overshoot of the average near r ¼ 1, but displays
a stiffer transition for the averages (see the Supporting
Material).

Dynamical considerations can explain the variation of av-
erages with r observed. If r>> 1, the gene-flip dynamics is
averaged by the low-pass filter, and the stationary regime is
correctly predicted by the fixed point values of the rate equa-
tions. In this limit, the gene remains bound or unbound for
very short amounts of time, during which mRNA and pro-
teins copy numbers can be considered as constant. RNA
and protein levels keep a memory of many previous state
switching cycles, and reach a stationary state with a proba-
bility distribution that is expected to be Gaussian. The coef-
ficient of variation

CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hP2i � hPi2

q
hPi

tends to zero as r increases, indicating that fluctuations in
protein concentration become negligible compared to the

average concentration in the limit of fast gene dynamics
(r / N).

Conversely, if r << 1, the gene reacts infinitely slowly.
The dynamics is then driven by the gene jumping between
two states according to a Poisson process. During the time
where the gene is active (respectively, inactive), protein
and mRNA levels quickly converge to their maximum value
L (respectively, to zero); at the end of a gene switching state
cycle, variables are always in the same state with no mem-
ory of previous cycles. Protein concentration temporal pro-
files feature a sequence of squared shape spikes, distributed
in time according to a Poisson process, and characterized by
a coefficient of variation, CVz

ffiffiffiffi
L

p
, increasing with the

overall production rate L. Thus, fluctuations are enhanced
by a slow gene and a high repression.

Then, a natural question is whether there exists between
these two limit cases a dynamical regime that behaves deter-
ministically, as in the fast-gene limit, and also displays
Biophysical Journal 107(10) 2403–2416
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strong variations of the protein concentration, as in the slow-
gene limit. Such dynamical behavior would feature a
sequence of protein concentration spikes, but with a time in-
terval distribution more regular than a Poisson process. This
intuition is based on the fact that when the gene-flip fre-
quency and the cut-off frequency of the low-pass filter are
resonant (r z 1), the random fluctuations of gene flips
generated by the Poisson process should be partially buff-
ered by the low-pass filter. This mechanism should prevent
spike bunching, generating a more regular dynamical
behavior that is the stochastic analog of an oscillatory
behavior (which we term thereafter ‘‘stochastic oscilla-
tions’’). To assess the veracity of this idea, we developed a
criterion to quantify the regularity of stochastic oscillations,
described in the next section.
Negative feedback induces protein spike
antibunching

The regularity of a stochastic oscillatory behavior is often
quantified using a temporal autocorrelation function
(8,37,47). This measure is sensitive to reproducibility in
both time and amplitude. However, temporal regularity is
certainly more relevant than amplitude regularity for biolog-
ical protein signals. The highly nonlinear response of many
signaling cascades can protect them against fluctuations in
amplitude, for example by saturating output above an input
threshold. A standard technique for assessing temporal reg-
ularity is to divide the state space into two regions I and II
and to study the distribution of the times where the system
leaves I to enter II. It is often useful to require a minimal
A

B

C

D

E

F
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excursion in region II to avoid spurious transitions induced
by noise. Here, we detect events where the protein level
crosses successively the mean protein level hPi* and the
P

0
* ¼ hPi* þ 0.25 stdev(P) level before falling back below

the mean protein level, where ‘‘stdev(P)’’ denotes the stan-
dard deviation of P.

Given the list of times where the system transits from low
to high protein levels, we compute the probability of detect-
ing n transitions within a time interval of fixed duration. To
be specific, we select a time interval equal to 10 times the
average time between two events, and characterize the prob-
ability distribution of the number of events by the variance
to mean ratio, also known as the Fano factor (48). This
method is inspired by how the temporal distribution of pho-
tons from a light source is generally characterized, with the
event of interest being a photon detection. A Fano factor
close to unity is obtained when time intervals between
events follow a Poisson distribution. A Fano factor greater
(less) than unity indicates super-Poissonian (respectively,
sub-Poissonian) behavior corresponding to a bunching
(respectively, antibunching) of protein spikes. Spike anti-
bunching can be viewed as a stochastic counterpart of
deterministic oscillations. Although using the coefficient
of variation of the interspike interval would give similar re-
sults, the method described above has the advantage to take
into account correlations between the successive transitions.

Fig. 4 displays stochastic simulations of the chemical
reaction network of Fig. 1 for a slow, an intermediate, and
a fast gene, as well as the probability distribution of the num-
ber n of transitions within a given timewindow. As expected,
protein spikes in the slow gene case (Fig. 4 A) are slaved to
FIGURE 4 Protein spike antibunching. (A–C).

Time evolution of protein copy number for L ¼
100, d ¼ 1, and r ¼ 10�3, 1, 103, respectively.

(Dashed lines) Mean protein level and mean pro-

tein level plus standard deviation. (Solid lines)

High trigger level; (solid circles) spiking events.

(D–F) Probabilities of observing n spikes during

a time window of 10 average transition times

r ¼ 10�3, 1, 103, respectively.
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the switching process, leading to a Poisson probability distri-
bution for n (Fig. 4 D) and accordingly a unit Fano factor.
In the intermediate gene response time case (Fig. 4 B), pro-
tein spikes are mostly antibunched (see solid circles). The
probability distribution of spike number is Gaussian-like
(Fig. 4 E), the Fano factor being ~0.25. This antibunching
degrades in the case of a fast gene (Fig. 4 C) with the
Fano factor rising to 0.9. Thus, we observe a resonance ef-
fect, which results from the coincidence of the characteristic
time of the gene response to protein variations with the time
during which gene state history is remembered, which is
controlled by the protein and mRNA decay rates.

We studied systematically how the Fano factor depends
on the gene resonance parameter r and the relative protein
decay rate d in stochastic simulations (Fig. 5). We found
that the regularity of protein spikes is reinforced by 1),
similar mRNA and protein decay rates (d z 1); 2), a reso-
nance parameter close to unity (rz 1); and 3), a sufficiently
strong feedback (L >> 1), as shown in Fig. 5, A and B.
Thus, the most regular oscillations are observed when the
gene cycling period resonates with the average mRNA/pro-
tein lifetime.

The lack of symmetry with respect to the transformation
d 4 1/d for low values of L (Fig. 5 B) results from numer-
ical difficulties to reach the infinite cell volume limit for
small dp (d << 1). As a control, we checked that the Fano
A

C

B

D

Factor is almost independent of the ratio b/dp (see Fig. 5
C), which determines the protein to mRNA ratio.

In the large L-limit, it is expected that the gene spends
most of the time in the off-state so that the average duration
of one on-/off-cycle is approximately given by toff ¼ 1/koff
in original time units. To study the interplay between the
gene state dynamics and the protein spike dynamics, a use-
ful indicator is c ¼ koffhTsi, where Ts is the average time in-
terval between two spikes. In the slow gene limit (r/ 0), c
tends to 1, indicating that protein and mRNA are slaved
to the gene dynamics in a fire-and-degrade mode. Con-
versely, the high value of c in the fast gene limit indicates
that the gene dynamics is too fast to be relevant and justifies
an adiabatic elimination of the gene state variable. In the
parameter region where spikes are more regular, the inter-
mediate values taken by c (between 1 and 10) reveal that
the gene dynamics and the mRNA/protein dynamics influ-
ence each other, and together generate the stochastic oscil-
lations observed.
The truncated moment expansion predicts the
appearance of stochastic oscillations

If a moment-closure model such as the TME model (Eqs. 5,
a–e) is relevant to the dynamics of the self-repressing gene,
it should be able to predict the stochastic oscillations
FIGURE 5 (Color online) Regularity of stochas-

tic oscillations. In panels A–C, the value of the

Fano factor F, which quantifies spiking regularity,

is shown as a function of two parameters (gray-

scale color-code; level lines are displayed in red).

(Yellow lines in panels A and B) The region where

the TME model predicts oscillations based on nu-

merical analysis (thick lines) or analytical criterion

Eq. 7 (thin lines). The regularity of stochastic oscil-

lations is favored by balanced protein and mRNA

degradation rates (corresponding to d x 1) as

well as (A) a resonance parameter r close to 1,

and (B) a high value of the overall production

rate L. (C) The ratio b/d controlling the relative

mRNA to protein concentration has no effect on

spike regularity. (D) The oscillation period (or pro-

tein average interspike time interval) is controlled

by the resonance parameter r. The variation of c,

the average number of on/off cycles in an inter-

spike interval, is displayed (grayscale code) as a

function of the lifetime ratio d and of the resonance

parameter r. (Red) Level lines. Stochastic simula-

tions of the biochemical network have been carried

out with koff/kon ¼ 100; b¼ 10d (A, B, and D); r ¼
1 (B and C); L ¼ 100 (A–C). To see this figure in

color, go online.
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evidenced in the previous section. Although such models
take fluctuations into account, they are deterministic ODE
models, where the natural counterpart of the regular spiking
observed in stochastic simulations would be the occurrence
of self-sustained oscillations. A linear stability analysis of
the TME model should then provide analytical insight into
the key parameters controlling the stochastic oscillations.

Indeed, the TME model exhibits oscillatory behavior and
the region in the parameter space where oscillation occurs
(identified by numerical stability analysis) is consistent
with the region of parameter space where regular stochastic
oscillations are observed (Fig. 5, A and B), at least for small
r (slow gene) or r z 1. In particular, the TME oscillation
region contains the point (r ¼ 1, d ¼ 1), which is the orga-
nizing center of the stochastic oscillation region in param-
eter space. However, the TME model does not capture
well the occurrence of regular stochastic oscillations when
r > 1 (Fig. 5 A). The influence of feedback strength L on
the appearance of oscillations depending on degradation
rate balance is correctly captured (Fig. 5 B), although the
TME model overestimates the value of L at which regular
oscillations are first observed (Fig. 5 B).

It is interesting to note that while the mean-field model of
the self-repressing gene is unconditionally stable, the
simplest model incorporating the feedback from fluctua-
tions, namely the TME model, predicts oscillations in
good agreement with the observed regular stochastic oscil-
lations. This strongly supports the idea that fluctuations
play a functional role to promote oscillations. Thus, it is
interesting to check whether an analytical criterion for the
appearance of oscillations can be derived, so as to identify
the role of each parameter in this dynamical behavior. In
generally, oscillation criteria for systems with four or
more variables are difficult to obtain. In this case, however,
an approximation in the stability analysis (see the Support-
ing Material) leads to a relatively compact Routh-Hurwitz
oscillation criterion (49), indicating the parameter space re-
gion in which oscillations originating from a Hopf bifurca-
tion occur. In our case, the criterion states that oscillations
occur in the TME model when the inequality

Hðr; h;LÞ ¼ r3
�
6þ 2

hGi�2
�
þ 8hr2

þrhð2hþ 2�LÞ þ h2<0

(7)

is satisfied, the average gene activity hG*i being defined by
Eq. 6. As Fig. 5, A and B, shows, the criterion (7) delimitates

very accurately the parameter space regions where oscilla-
tory behavior is observed in the TME model, as indicated
by a numerical stability analysis. Therefore, it is tempting
to use it to discuss the influence of the different parameters
on the appearance of regular stochastic oscillations, at least
for r % 1, where the TME model reflects the existence of
these stochastic oscillations with oscillating averages and
moments.
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In particular, it can be seen that the only negative term in
Eq. 7 is �rhL, and thus that a sufficiently large value of L
is required for oscillations. On the other hand, h should not
be too large, otherwise the h2 term of Eq. 7 is dominant.
Given that h ¼ (1 þ d)2/d, the lowest possible value for h is
4, which is reached when d ¼ 1. This implies that the
mRNA and protein degradation rates should not be too
different, as is observed in the stochastic simulations. More
precisely, a necessary condition for the occurrence of oscilla-
tory behavior at r¼ 1 isLR 3hþ (13hþ 6)/(h – 1), which
shows that larger values of h require larger values of L (i.e.,
stronger feedback), as indicated by Fig. 5 B.

Let us now consider how the value of r influences oscil-
latory behavior. When r / 0 (i.e., the gene cycling period
is much longer than average protein/mRNA lifetimes), the
criterion is never satisfied because H ¼ h2 > 0, and no
oscillations occur. When r / N, the dominant term is
obviously positive, and no oscillations occur either. For in-
termediate values of r, the quantity H can become negative
when L is sufficiently large and h is sufficiently close to its
minimum value of 4, as discussed above.

The discussion is easier in the limit of large L, where the
oscillation criterion simplifies considerably (see Section
S.H. Linear Stability Analysis of the TME Model in the
Supporting Material). Two cases must be considered ac-
cording to whether r is small or close to 1, because the
gene average activity scales differently with L in these
two cases. For r ¼ O(1), we find that the leading term of
the exact Routh-Hurwitz criterion is

Hz� rð � 2 h r2 � 2 r3 þ h2 � r hÞ
ðhþ rÞ L (8)

so that oscillations occur when

2 r2hþ 2 r3 � h2 þ r h<0; (9)

which describes well the rightmost boundary of the oscilla-
tion region in Fig. 5 A (see Fig. S3 in the Supporting Mate-

rial). The simplicity of the criterion allows us to discuss the
relative influences of gene response time (characterized by
r) and degradation rate balance (characterized by h) on
the appearance of oscillations. We see that H changes
abruptly from large negative to large positive values at

h ¼ hc ¼

rþ 1=2þ 1

.
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 r2 þ 12 rþ 1

p �
r; (10)

so that oscillations are lost for higher values of h. When r is
small (r¼O(1/L)), then the oscillation criterion simplifies to
r>h=L; (11)

corresponding to the leftmost boundary of the oscillation re-
gion in Fig. 5 A (see Fig. S3).
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Thus, oscillations are systematically found for r ˛[h/
L,rc], where rc is the value of r satisfying Eq. 10 for a given
value of h, with rc z 1.07 for d ¼ 1 (h ¼ 4), and where H
switches from negative infinity to positive infinity. This con-
firms unambiguously the existence of a wide region of oscil-
lation in parameter space. The singular behavior observed at
rc is presumably an artifact of the truncation scheme used,
and is related to the fact that the choice of the moment-
closure function affects the highest-order term in r in the
criterion (7) (see Section S.H. Linear Stability Analysis of
the TME Model in the Supporting Material). It is plausible
that the singularity would disappear at a higher truncation
order, and that in this case, the oscillation region would
extend further toward larger values of r, improving the
agreement with stochastic simulations. However, the system
would then perhaps be too complicated to obtain an analyt-
ical oscillation criterion.

Globally, the TME model captures well how the mean-
field variables and fluctuations interact through nonlinear-
ities to generate relatively regular stochastic oscillations,
at least when the gene response time is not too small (i.e.,
when r % 1). The fact that an analytical criterion for its
oscillation threshold, which becomes very simple in the
limit of large L, can be obtained allows one to understand
the role of the different parameters. In particular, it confirms
that oscillations are favored when mRNA and protein degra-
dation rates are close to each other (i.e., d ¼ 1 and h ¼ 4). It
is also consistent with the fact that oscillations always occur
in the neighborhood of r ¼ 1.
Oscillations in Hes1 expression match the
criterion for fluctuation-induced oscillations

The main result of this work is that stochastic fluctuations in
a self-repressing gene can play a functional role in promot-
ing the appearance of relatively regular oscillations in spe-
cific regions of the parameter space. It is then natural to
ask whether oscillating self-repressing gene circuits found
in biological systems operate in the parameter region we
have identified. One such circuit that has been intensively
studied is the Hes1 gene, which is believed to be at the
core of the somite clock (17). It is well known that a crucial
ingredient of oscillations in Hes1 expression is the presence
of a time delay, associated to transcription, translation, or
transport. This time delay is often modeled as an explicit
time delay (23–25,40); however, it can also result from a
slow reactional step (21,22,26).

In our system, the time delay is due to the finite gene
response time related to the binding/unbinding dynamics.
This finite gene response time can also be viewed as taking
into account phenomenologically other sources of delay, if
they arise from reactional steps and thus are exponentially
distributed. More precisely, the gene can persist in the off-
state for some time after protein level goes down because
of the characteristic time tg ¼ k�1

off (in original time units)
needed to switch from the off- to the on-state. Therefore,
this characteristic time can be viewed as the delay inducing
oscillations, and large-scale variations of protein concentra-
tion will typically appear when it is not too small compared
to protein half-life. We found that these variations are more
regular when these two timescales are equal. Of course, the
oscillations in our model remain less regular than those
observed in Hes1 because 1), the delay is exponentially
distributed rather than constant, and 2), there is no coopera-
tivity. Yet, the models are sufficiently similar that if there is
a parameter region where fluctuations promote oscillations
in our stochastic self-repressing gene model, this should
remain true for the Hes1 circuit because oscillations would
then be more robust to random variations of the delay. Such
random variations could be due, for instance, to the presence
of reactional steps. We should then expect this specific
parameter region to be selected by evolution.

The initial observation of interest is that in the Hes1 oscil-
lator, the protein and mRNA half-lives are approximately
equal, with reported values of 22 and 24 min, respectively
(17). This is fully consistent with both our observation
that regular oscillations occur preferably for d ¼ 1
(Fig. 5). Note that this contrasts with what is known for
the mean-field model, where making degradation rates un-
balanced while keeping their sum constant favors oscilla-
tions (26).

A crucial parameter for the regularity of the stochastic os-
cillations is the resonance parameter r, which depends on
the time delay and on the mRNA and protein half-lives.
However, the time delay in the Hes1 circuit is not known
experimentally. In theoretical investigations (see, e.g., Bar-
rio et al. (40) and Bernard et al. (50)), it is generally assumed
that the time delay ranges from 10 to 40 min. We assume
here a value of 30 min, which is consistent with the fact
that for large half-lives, the oscillation period of 120 min
is approximately equal to four times the delay (23). With
the known values for the mRNA and protein half-lives
(which translate to dp ~ dp 0.03 min�1), this yields r ~ 2.
Together with d ¼ 1, this value corresponds precisely to
the region of regular oscillations in Fig. 5 A. Furthermore,
note that Fig. 5 D indicates that for r ¼ 2, the ratio of the
oscillation period to the delay 1/koff is indeed close to 4.

Finally, other theoretical investigations (see, e.g., Barrio
et al. (40) and Bernard et al. (50)) assume that L >> 1.
This, in fact, is a natural condition, which requires that the
maximum protein level reached when the gene is fully
active must be much larger than the half-repression
threshold. This ensures that the protein level can go either
below or above this threshold during the course of oscilla-
tions, and that the gene is strongly repressed when protein
level is high.

Taken together, these facts strongly suggest that the Hes1
mRNA and protein half-lives have been tuned to be close to
the time delay to make oscillations in Hes1 expression
robust against stochastic fluctuations in delay.
Biophysical Journal 107(10) 2403–2416
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DISCUSSION AND CONCLUSION

In this article, we have studied the stochastic dynamics of a
self-repressing gene model, in which the gene switches
randomly between the active and inactive state with a char-
acteristic time which can be arbitrarily small or large
compared to mRNA and protein lifetimes. The regularity
of the protein spikes generated by the dynamics was charac-
terized using a Fano-like indicator. This allowed us to evi-
dence a dynamical resonance phenomenon, namely that a
more regular time evolution of protein concentration is
observed when the protein and mRNA degradation rates
and the gene response time are nearly equal. It should be
stressed that fluctuations are here the only factor triggering
oscillations, because our model does not incorporate coop-
erativity or nonlinear degradation. The regularity of the os-
cillations displayed in Fig. 4 B would be significantly
improved by using these two ingredients, as is done in
most theoretical investigations, or by considering a fixed
time delay in addition to the exponentially distributed
gene response time.

To understand the resonance phenomenon, we devel-
oped a deterministic ODE model using a moment-closure
approximation of the master equation. The TME model
describes the combined time evolution of the average
gene activity, protein, and mRNA concentrations and of
the two raw moments linking gene activity with protein
and mRNA concentrations, in accordance with the fact
that the gene state remains a binary variable in the infinite
volume limit and thus is the most stochastic variable.
Such a model naturally describes how nonlinearity injects
fluctuations into the average dynamics, which can be
substantially modified. The steady state of the TME model
predicts well how averages and covariances vary with the
gene response time and the ratio of mRNA and protein
degradation rates.

In particular, it reproduces the fact that the average gene
activity is significantly reduced in the slow gene limit.
Unlike rate equations, which are unconditionally stable,
the TME model displays a Hopf bifurcation and predicts
oscillations in a parameter region where numerical simula-
tions indicate that the protein spikes are indeed more regu-
larly spaced. It remains that the agreement is less good when
r > 1, presumably because the moment closure approxima-
tion affects the r3 term in the oscillation criterion, making it
sensitive to tiny variations. A direction for future research
will thus be to better understand this effect and to derive a
more comprehensive description of the self-repressing gene.

Globally, we believe that our results support the idea that
deriving deterministic equations through a moment-closure
approximation of the master equation is an interesting
approach to describe the bifurcation diagram of stochastic
dynamical systems, which is generally a difficult problem
(see, e.g., Bratsun et al. (51) and Song et al. (52)). This
approach is all the more interesting, inasmuch as computer
Biophysical Journal 107(10) 2403–2416
software is available to derive the hierarchy of equa-
tions for the moments or cumulants of increasing order
(43,53). The approach described here is also well fitted
to problems where one variable remains microscopic,
such as gene state, and where fluctuations dramatically
affect the average values. It thus brings a distinctive advan-
tage compared to other methods based on the linear noise
approximation (42).

To check whether the resonance effect discussed here
is relevant in real genetic oscillators, we examined the time-
scales reported for the Hes1 self-repressing gene (17,23,24).
In this circuit, the mRNA and protein lifetimes are approx-
imately equal to the time delay. We found that this situation
is characterized by the reduced parameters r ¼ 2, d ¼ 1,
which are located near the center of the parameter region
where regular protein spiking is observed. This strongly
suggests that the phenomenon of stochastic resonance we
have unveiled plays an important role for generating robust
genetic oscillations, independently of other oscillation-
enhancing effects such as cooperativity in the transcriptional
regulation (54) or nonlinear degradation (26,29), which
can be simultaneously harnessed. A possibly related obser-
vation by Murugan and Kreiman (55) is that protein
response times fluctuate less when mRNA and protein life-
times are closer. Another interesting fact is that when the
sum of half-lives is kept constant, balanced degradation
leads to a longer delay in the feedback loop (see Section
S.G. Analysis of the Low-Pass Filter: Cut-Off Frequency
and Feedback Delay in the Supporting Material). From a
mathematical point of view, the fact that several important
timescales coincide may favor the appearance of complex
conjugate eigenvalues in the Jacobian matrix, a prerequisite
for oscillations.

More generally, we believe that our findings provide a
remarkable example of how stochastic fluctuations, which
are unavoidable in genetic networks, may play a functional
role to shape their dynamics (7).
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S.A. MASTER EQUATION

The self-repressing gene reaction network involves four chemical species: the unbound

gene G, mRNA M , protein P and the DNA-protein complex GP . These molecular actors

interact via the following biochemical reactions:

G + P
kon/Ω−−−−⇀↽−−−−
koff

GP (S1a)

G
αΩ−→ G+M (S1b)

M
β−→ M+P (S1c)

M
δM−→ ∅ (S1d)

P
δP−→ ∅ (S1e)

The cell volume parameter Ω allows us to consider the limit where the protein and mRNA

copy numbers are macroscopic variables and are not affected by a one-copy variation. Defin-

ing the DNA-protein binding rate as kon/Ω and the transcription rate of the free gene as

αΩ ensures that in the infinite volume limit, the average amount of time spent by the gene

in the active state as well as the mRNA and protein average concentrations m/Ω and p/Ω

remain bounded. The unbinding rate is koff . The parameter δm (resp., δp) is the linear

mRNA (resp., protein) degradation rate and β is the translation rate.

If Pg,m,p(t) denotes the probability to find the gene in stage g (where g = 0 represents the

bound gene and g = 1 the unbound state), together with m mRNA and p protein copies at

time t, its time evolution is governed by the following master equation :

d

dt
Pg,m,p = (−1)g

[

kon
Ω

(p+ 1− g) P1,m,p+1−g − koffP0,m,p−g

]

(S2)

+δg,1αΩ
[

E
−
m − 1

]

Pg,m,p + βm
[

E
−
p − 1

]

Pg,m,p

+δm
[

E
+
m − 1

]

m Pg,m,p + δp
[

E
+
p − 1

]

p Pg,m,p.

where E
±
x is the usual step operator [1] defined by E

±
x f (x, y) = f (x± 1, y).
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S.B. MOMENT EXPANSION

The moments of the probability distribution Pg,m,p are defined by:

Mn1,n2,n3
= 〈gn1mn2pn3〉 =

∑

g,m,p

gn1mn2pn3Pg,m,p. (S3)

The idea of a moment expansion is to use the chemical master equation to derive equations

describing the time evolution of these statistical quantities, taking into account that the

Pg,m,p generally evolves with time [1]. More precisely, the time derivative of the moments

defined by (S3) involves time derivatives of the Pg,m,p probabilities, which may be expressed

in terms of the Pg,m,p themselves using the master equation (S2). The resulting expression

can be rewritten in terms of moments [2].

It is well known that closed equations can only be obtained when the underlying dynamics

is linear. When it is nonlinear, as is the case here, the time derivative of a cumulant of given

order depends on higher-order cumulants, so that there is essentially an infinite number

of equations to be considered. A common strategy to obtain a finite-dimensional set of

equations approximating the chemical master equations is to truncate this infinite hierarchy

in some way. In the present case, we will only consider the infinite cell volume limit, so that

the variations of protein and mRNA copy numbers by one unit is negligible. The remaining

fluctuations in the mRNA and protein concentrations are then only due to gene fluctuations.

The moment expansion that we derive below takes a simpler form if we replace the mRNA

copy number by the weighted average

u =
β m+ δm p

δp + δm
, (S4)

and by using the following rescaled variables

rt =
δm+δp
δpδm

; rg = 1; ru = rp =
kon

koffΩ
; rm = βkon

δpkoffΩ
; (S5a)

T = rt t; G = rg g; U = ru u; P = rp p. (S5b)

Note that since g is a binary variable, 〈gn〉 = 〈g〉, which simplifies the cumulant expansion.

Introducing the following rescaled parameters

ρ =
koff (δm + δp)

δpδm
; Λ =

αβkon
δmδpkoff

; η =
(δm + δp)

2

δmδp
, (S6)
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the normalized time evolution equations for the averages in the infinite cell volume limit

read:

d

dT
〈P 〉 = η [〈U〉 − 〈P 〉] ; (S7a)

d

dT
〈U〉 = Λ〈G〉 − 〈P 〉; (S7b)

d

dT
〈G〉 = ρ (1− 〈G〉 − 〈GP 〉) ; (S7c)

d

dT
〈GU〉 = Λ〈G〉 − 〈GP 〉 − ρ [〈GUP 〉+ 〈GU〉 − 〈U〉] ; (S7d)

d

dT
〈GP 〉 = η [〈GU〉 − 〈GP 〉]− ρ

[

〈GP 2〉+ 〈GP 〉 − 〈P 〉
]

; (S7e)

d

dT
〈U2〉 = 2 [Λ〈GU〉 − 〈PU〉] ; (S7f)

d

dT
〈P 2〉 = 2η

[

〈PU〉 − 〈P 2〉
]

; (S7g)

d

dT
〈UP 〉 = Λ〈GP 〉 − 〈P 2〉+ η

[

〈U2〉 − 〈PU〉
]

. (S7h)

Because of the binary gene binding reaction (S1a), the time derivatives of the second order

moments 〈GU〉 and 〈GP 〉 depend on the third-order moments 〈GUP 〉 and 〈GP 2〉 which are

unspecified at this stage. Thus Eqs. (S7) do not form a closed system of equations.

The moments involving the natural variables G, M , and P can be recovered by the

relations

〈M〉 = (1 + δ) 〈U〉 − 〈P 〉
δ

, (S8a)

〈GM〉 = (1 + δ) 〈GU〉 − 〈GP 〉
δ

, (S8b)

〈MP 〉 = (1 + δ) 〈PU〉 − 〈P 2〉
δ

, (S8c)

〈M2〉 = (1 + δ)2 〈U2〉 − 2 (1 + δ) 〈PU〉+ 〈P 2〉
δ2

. (S8d)

S.C. FIRST ORDER TRUNCATION OF THE MOMENT EXPANSION

A first strategy to truncate the hierarchy of moment equations is to set all covariances

(the second order centered moments) to zero [1]

〈(X − 〈X〉) (Y − 〈Y 〉)〉 = 0,

which enslaves the covariances to the means 〈XY 〉 = 〈X〉〈Y 〉. Under this approximation,

all fluctuations are neglected and the following deterministic rate equations for the averages
3



are obtained:

d

dT
〈P 〉 = η [〈U〉 − 〈P 〉] ; (S9a)

d

dT
〈U〉 = Λ〈G〉 − 〈P 〉; (S9b)

d

dT
〈G〉 = ρ (1− 〈G〉 − 〈G〉〈P 〉) . (S9c)

The steady state solution of (S9) is given by

Λ〈G〉∗ = 〈U〉∗ = 〈P 〉∗ = 1

2

(√
1 + 4Λ− 1

)

, (S10)

which does not depend on ρ, and is stable in the entire parameter space. Indeed, it was

noted by Morant et al. [3] that besides the finite gene response time, a nonlinear degradation

mechanism is needed to induce oscillations in this system.

Incorporating fluctuations in the dynamics of the average quantities requires truncating

the hierarchy at a higher order. We discuss two different strategies in the following sections.

S.D. SECOND ORDER TRUNCATION, THE TOT MODEL

A. Derivation of the model

A natural extension of the previous developed truncation is to keep the second order

moments and enslave the third order moments to the means and covariances by assuming

vanishing third order centered moments. So assuming that

KGUP = 〈(G− 〈G〉) (U − 〈U〉) (P − 〈P 〉)〉 = 0, and KGPP = 〈(G− 〈G〉) (P − 〈P 〉)2〉 = 0,

fixes the two following dependencies

〈GUP 〉 = G〈UP 〉+ U〈GP 〉+ P 〈GU〉 − 2〈G〉〈U〉〈P 〉, (S11)

〈GP 2〉 = G〈P 2〉+ 2P 〈GP 〉 − 2〈G〉〈P 〉2. (S12)
4



FIG. S1. Comparison of averages and covariances obtained from stochastic simulations

and from the fixed points of ODE models derived using the TOT and TME truncation

schemes. (A) Average gene activity G; (B), (C), (D) covariances ∆GP , ∆GM and ∆PP ; (E), (F)

third-order cumulants computed from numerical simulations. Curves for different values of δ are

color-coded according to legend box. In each panel, thick lines (resp., thin) lines indicate positive

(resp., negative) values.
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Under this hypothesis, the time evolution of averages and covariances is described by the

closed differential system :

d

dT
P = η (U − P ) ; (S13a)

d

dT
U = ΛG− P ; (S13b)

d

dT
G = ρ (1−G−GP −∆G,P ) ; (S13c)

d

dT
∆G,U = ΛG (1−G)−∆G,P − ρ [G∆P,U + (P + 1)∆G,U ] ; (S13d)

d

dT
∆G,P = η [∆G,U −∆G,P ]− ρ [G∆P,P + (P + 1)∆G,P ] (S13e)

d

dT
∆U,U = 2 [Λ∆G,U −∆P,U ] ; (S13f)

d

dT
∆P,P = 2η (∆P,U −∆P,P ) ; (S13g)

d

dT
∆P,U = Λ∆G,P −∆P,P + η [∆U,U −∆P,U ] , (S13h)

where ∆X,Y stand for the covariance of random variables X and Y : ∆X,Y = 〈XY 〉−〈X〉〈Y 〉.
We refer to model (S13) as the Third-Order Truncation (TOT) model.

The steady state of model (S13) is obtained by solving the following equations:

U = P = ΛG; ∆P,P = ∆M,P = ∆U,P = Λ∆G,U ; (S14a)

η∆U,U = (1 + η) Λ∆G,U − Λ∆G,P ; (S14b)

∆G,P = 1−G− ΛG2; (S14c)

(ρ+ ρΛG+ η)∆G,P = [η − ρΛG] ∆G,U ; (S14d)

∆G,P + ρ (1 + 2ΛG)∆G,U = ΛG (1−G) ; (S14e)

∆M,M = Λ ∆G,M = Λ
(1 + δ)∆G,U −∆G,P

δ
. (S14f)

The steady state value of ∆GP , which is the joint correlation between the gene state and

the protein copy number, vanishes when ρΛG = η. The steady state values of averages

in the model (S13) then coincide with those derived from the rate equations (S9), given

by (S10). Except in this particular case, equations (S14) do not admit analytical solutions.

However, asymptotic expressions for the steady state values of averages and covariances can

be obtained by a perturbative expansion when the resonance parameter ρ and feedback

strength Λ are either very large or very small, as is summarized in Table S1. In this

computation, the ratio δ is assumed to be neither very large nor very small. The expressions
6



given in Table S1 allow us to characterize the effect of fluctuations in the different limiting

cases considered.

ρ → 0 ρ → ∞ ρ → 0 ρ → ∞

Λ ≪ 1 Λ ≪ 1 Λ ≫ 1 Λ ≫ 1

ΛG∗ = U∗ = P ∗ ≃ Λ + ρΛ Λ + Λ4

ρ 1 + 3ρ
√
Λ
(

1 + 1
4ρ

)

∆∗
GP ≃ Λ2 − ρ −Λ3

ρ 1− 9ρ
Λ − 1

2ρ

∆∗
M,P = ∆∗

P,P = ∆∗
U,P = Λ∆∗

G,U ≃ Λ3 − 3ρΛ2 Λ3

ρ Λ + 3ρΛ−3η
η

√
Λ

2ρ

∆∗
U,U ≃ Λ3 − ρΛ Λ3

ρ
η+2Λ

η Λ + 3ρΛ1+η
η2

√
Λ

2ρ
2+η
η

∆∗
M,M = Λ∆∗

G,M ≃ Λ3 − ρΛ Λ3

ρ
δ+2Λ

δ Λ + 3ρΛ1+δ
δη

√
Λ

2ρ
2+δ
δ

TABLE S1. Asymptotic expressions of the steady state values of averages and covariances for

Eqs. (S13).

The second column of Fig. (S1) shows that the fixed point values of the TOT model are

in good quantitative agreement with the numerical estimators (first column of Fig. (S1)).

Regarding the averages, the overall shapes of the curves, with a maximum around ρ = 1, are

very similar and the evolution of this maximum with δ is reproduced (Fig. S1-A). The main

discrepancy is that the transition from the fast to the slow gene regime is more abrupt in the

TOT model than in stochastic simulations, presumably because higher-order contributions

to the averages are neglected. The global evolution of the covariances is also well reproduced,

and the values of ρ where ∆GP becomes zero are also well predicted for the different values

of δ (Fig. S1B). Similarly, the variation of ∆GM with δ is captured. (Fig. S1-C). However,

the TOT model fixed point values overestimate the covariances ∆GM and ∆PP (Fig. S1-

C,D) in the fast gene limit. Still, the asymptotic values of the TOT model steady states

(summarized in Table S1 in the Supporting Material) are correctly reproduced.

A key assumption of the TOT model is that the third centered moments KG,U,P and

KG,P,P vanish, which is correct in the fast gene limit. However, Figs. S1-E,F show that they

take rather large values in the stochastic simulations, of the order of Λ, in the slow gene

limit. One may thus wonder why the TOT model is effective in this regime. Examining the

structure of the equations solves this paradox.
7



Consider the dynamical equations for the covariance ∆GP and ∆GU :

d

dT
∆G,U = ΛG (1−G)−∆G,P − ρ [KG,U,P +G∆P,U + (P + 1)∆G,U ] ; (S15a)

d

dT
∆G,P = η [∆G,U −∆G,P ]− ρ [KG,P,P +G∆P,P + (P + 1)∆G,P ] . (S15b)

The key point is that KGUP and KGPP are both weighted by ρ, so their dynamical influence

vanishes in the slow-gene limit even thought their are non zero.

Figure (S2) displays the values of all terms in Eqs. (S15) for various ρ. In the slow gene

regime, (ρ → 0) the first two terms of each equation dominate (i.e., ΛG (1−G) and ∆GP

for Eq. (S15a); η∆GU and η∆GP For eq. (S15b)) whereas in the fast gene limits, the last

two terms dominate (ρ∆PU and ρ (P + 1)∆GU for eq. (S15a)); ρ∆PP and ρ (P + 1)∆GP for

eq. (S15b)). The fact that third-order central moments do not converge to zero in numerical

simulations when ρ → ∞ is due to numerical cancellation errors in their computation,

because two nearly equal numbers are being substracted, and should not be taken into

account.

In both regimes, the influence of the third order cumulants vanish. It turns out that terms

involving third-order cumulants play a more important role in the intermediate regime where

they are the dominant negative terms in the expression of the time derivative of ∆GU for

ρ ≃ 0.1. Therefore, the TOT model provides an excellent approximation for both fast

and slow gene dynamics, and provides only a reasonable description of the dynamics in the

intermediate regime.

S.E. ALTERNATIVE TRUNCATION, THE TME MODEL

In the moment expansion (S7), Eqs. (S7d-e) describing the time evolution of 〈GP 〉 and
〈GU〉 are independent of 〈U2〉, 〈P 2〉, and 〈UP 〉. However, Eqs. (S7a-e) do not form a closed

system due to the presence of the 〈GUP 〉 and 〈GP 2〉 terms. Here, we use an another closure

approximation by enslaving the third moment 〈GUP 〉 and 〈GP 2〉 to the average gene activity
〈G〉 via a phenomenological function.

In the case of a strong repression (i.e., Λ ≫ 1), the moments 〈GUP 〉 and 〈GP 2〉 can

be derived from considerations both in the slow and the fast gene limits. In the fast gene

limit, the proteins and mRNA number of copies are almost constant over a gene switch

and correspond to their stationary value G ≃ U ≃
√
Λ so 〈GUP 〉ρ→∞ = 〈GP 2〉ρ→∞ =
8
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= 1 (equal degradation rates), and various ρ. The differential equation at the top of each panel

ndicates the color code. In each panel, thick lines (resp., thin) lines indicate positive (resp.,

egative) values.

〈G〉∗ =
√
Λ, as 〈G〉∗ ≃ 1/

√
Λ. In the slow gene limit (ρ ≪ 1) the averages, covariances

nd third-order joint cumulants can be computed because all variables are slaved to the

ene state variable. In particular, the values of P and U alternate between 0 when the

ene is off and Λ when the gene is on. In normalized time units, the gene is active during
9



a time tON = 1/Λ and inactive during a time tOFF = 1 so that its average activity is

G∗ = tON/(tON + tOFF ) = 1/(1 + Λ) and P ∗ = U∗ = ΛG∗ = Λ/(1 + Λ) ≈ 1. Because

P and U can be assumed to have a constant value of Λ during the phase where G = 1, it

follows that 〈GUP 〉ρ→0 = 〈GP 2〉ρ→0 = Λ〈G〉∗ = 1
Λ
. Finally, we get 〈GUP 〉 = 〈GP 2〉 = 1

〈G〉

in the two limits. We then seek to express 〈GUP 〉 and 〈GP 2〉 in terms of the same function

depending on 〈G〉 only :

〈GUP 〉 = 〈GP 2〉 = F (〈G〉) .

The moment expansion (S7) then reduces to a five dimensional ODE system:

d

dT
〈P 〉 = η [〈U〉 − 〈P 〉] ; (S16a)

d

dT
〈U〉 = Λ〈G〉 − 〈P 〉; (S16b)

d

dT
〈G〉 = ρ (1− 〈G〉 − 〈GP 〉) ; (S16c)

d

dT
〈GU〉 = Λ〈G〉 − 〈GP 〉 − ρ [F (〈G〉) + 〈GU〉 − 〈U〉] ; (S16d)

d

dT
〈GP 〉 = η [〈GU〉 − 〈GP 〉]− ρ [F (〈G〉) + 〈GP 〉 − 〈P 〉] . (S16e)

The fixed point of Eqs. (S16) is obtained by solving

− (Λ + 1) 〈G〉∗ + 1 +
ρ (η + ρ)

ρ (η + ρ) + η
F (〈G〉∗) = 0. (S17)

Requesting that the solution of Eq. (S17) in the limit of fast gene (ρ ≫ 1) coincides with

the stationary state of the rate equation (S9) allows one to obtain the asymptotic form of

the unknown function F :

lim
ρ→∞

F (〈G〉) = F∞ (〈G〉) = (1− 〈G〉)2
〈G〉 .

By extending this asymptotic form to the whole ρ axis and fixing

F (〈G〉) = (1− 〈G〉)2
〈G〉 ,

an alternate moment-closure model is obtained, which we term the Truncated Moment

Expansion (TME) model. Its fixed point describe well the stationary values of the averages

(see main text).

The third column of Fig S1 displays the fixed points of the TME model recast in terms

of averages and covariances of the natural rescaled variables G, M , and P , so as to allow
10



comparison with the fixed points of the TOT model and provide information which is com-

plementary to that of Fig 3. The absence of an overshoot in the averages near ρ = 1 is

correlated with the fact that ∆GP does not change its sign as rho increases.

S.F. STABILITY ANALYSIS

Figure (S3) compares the parameter space regions where TOT and TME models oscillate,

as indicated by a numerical stability analysis. In the slow gene regime (ρ → 0), the two

models display similar behavior, as could be expected from the fact that the closure approx-

imations are consistent in this case. Similarly, none of the two models displays oscillations

in the large ρ limit.

FIG. S3. Comparison between TOT and TME models oscillatory domain. The lines

enclose the region where the TOT model (thin lines) and the TME model (thick lines) oscillate for

various Λ (see legend box for color code).. The analytical expression of the two boundaries derived

for Λ ≫ 1 are ρ = η/Λ (dashed lines) and η2 − 2ρ3 − 2ηρ2 − ηρ = 0 (black line), with η = (1+δ)2

δ

(see Sec. S.H).
11



However, the oscillation region of the TOT model is much narrower and moreover, is

clearly disconnected from the (ρ = 1, δ = 1) central point where the regular stochastic

oscillations are preferentially observed. This suggests that the third-order cumulants play

an important role in the dynamics, in accordance with their importance in the equations

describing the time evolution of covariances involving the gene state (Fig. (S2)).

S.G. ANALYSIS OF THE LOW-PASS FILTER : CUT-OFF FREQUENCY AND

FEEDBACK DELAY

In the infinite volume limit, Eqs. (2a-b) describing the time evolution of the averages of

mRNA and protein concentrations are linear and do not depend on higher-order moments.

Assume that mRNA and protein concentrations respond to gene activity considered as an

external signal. The two equations

d

dt
〈P〉(t) = β 〈M〉(t)− δp 〈P〉(t); (S18a)

d

dt
〈M〉(t) = α 〈g〉(t)− δm 〈M〉(t). (S18b)

can be viewed as describing a low-pass filter, whose dynamics is easily characterized. If we

denote by 〈g〉(ω) and 〈P〉(ω) the Fourier transforms of the input 〈g〉(t) and output 〈P〉(t)
of the low-pass filter, then the transfer function is given by

F (ω) =
〈P〉(ω)
〈g〉(ω) =

αβ

δpδm − ω2 + iω (δp + δm)
. (S19)

The cut-off frequency Ωc, defined by |F (ω = Ωc)|2 = 1
2
|F (ω = 0)|2, characterizes the spec-

tral interval in the input which is transmitted to output. More precisely, a sinusoidal input

of frequency Ωc and amplitude A induces a sinusoidal output of amplitude A/
√
2. The

expression of the cut-off frequency Ωc is

Ωc = ωc

√

η2 − 2η

2

√

√

√

√

√

1 +
4

(η − 2)2
− 1, (S20)

where ωc =
δpδm
δp+δm

and η = (δp+δm)2

δpδm
. Ωc/ωc varies between 2

√√
2− 1 ≈ 1.29 when η = 4 and

1 when η is large. Thus ωc provides a good approximation of Ωc (whose definition involves

itself an arbitrary choice) and characterizes the relevant time scale.
12



If we rescale frequency with respect to ωc by defining ω = ω′ωc, the transfer function

reads

F (ω′) =
K

η − ω′2 + iω′η
, (S21)

whereK is a constant. This corresponds to the time rescaling that we use in model derivation

and which are defined Eqs. (S5).

The low-pass filter, as any linear system, is fully characterized by its impulse response,

computed as the inverse Fourier transform of the transfer function Eq. (S21). The impulse

response represents the protein time profile created by an infinitely short pulse of gene

activity at time 0 :

PIR(T ) ∝
2η

√

η2 − 4η
sinh

(

1

2

√

η2 − 4η T

)

e−
1

2
ηT T ≥ 0. (S22)

The impulse response displays a maximum at T = Tm, where Tm depends on η only:

Tm =
log

(

√

η2 − 4η + η
)

− log
(

−
√

η2 − 4η + η
)

√

η2 − 4η
. (S23)

The value of Tm, which corresponds to the delay between gene activity pulse and maximum

protein concentration, decreases monotonously from its maximum value of 0.5 for η = 4 to

0 for large η (Fig. S4).

Assuming that the sum of mRNA and protein half-lives is fixed, the case of balanced

half-lives (η = 4, δ = 1) implies then a longer delay in the negative feedback loop.

S.H. LINEAR STABILITY ANALYSIS OF THE TME MODEL

The linear stability analysis characterizes the qualitative behavior of the trajectories of

a dynamical system near a fixed point by examining the eigenvalues of the Jacobian matrix

evaluated at the fixed point. If all eigenvalues have negative real parts, the fixed point is

stable.

When the real part of a pair of complex conjugate eigenvalues crosses zero from negative

to positive, the fixed point becomes unstable and generically gives birth to a limit cycle, as-

sociated with appearance of spontaneous oscillations (Hopf bifurcation) [4]. The occurrence

of such a bifurcation can be investigated using the Routh-Hurwitz criterion [5, 6] without

having to compute the actual eigenvalues. The Routh-Hurwitz criterion provides one with
13



FIG. S4. Impulse response of the low pass filter. The protein concentration time profile in

response to an impulse gene signal displays a maximum around a time Tm, whose dependence on

η is shown in the insert.

a set of functions of the coefficients of the characteristic polynomial, which are all negative

when the fixed point is stable. One of these functions go through zero at a Hopf bifurcation,

and thus can be used as a criterion for the appearance of oscillations.

The dynamical properties of the TME model is governed by Eqs. (5a-e) of the main text.

The Jacobian matrix evaluated at the fixed point reads

J =





















−η η 0 0 0

−1 0 Λ 0 0

0 0 −ρ 0 −ρ

0 ρ Λ− ρD −ρ −1

ρ 0 −ρD η −η − ρ





















, (S24)

where D = D(〈G〉∗) = D(ρ, η,Λ) = dF (X)/dX|X=〈G〉∗ is the derivative of the function F

used in the closure approximation 〈GUP 〉 = 〈GP 2〉 = F (〈G〉).
The analysis of the Routh Table computed using the characteristic polynomial of the

Jacobian (S24) leads to an oscillation criterion H′(ρ, η,Λ) with a complicated expression,

however the analysis of its structure reveals that

H(ρ, η,Λ) = ρ3 (8− 2D(ρ, η,Λ)) + 8ηρ2 + ρη (2η + 2− Λ) + η2 < 0 (S25)
14



is a sufficient condition for the occurrence of spontaneous oscillations. Indeed, the Routh-

Hurwitz criterion can be decomposed as H′ = A×H−B < 0 where A and B are two strictly

positive functions of ρ, η, and Λ, and thus cannot become positive if H is not positive. In

practice, numerical simulations show that H = 0 delimitates very accurately the oscillation

region in parameter space (see Fig. 5 in main Text).

Interestingly, H < 0 corresponds to the stability criterion of the approximated Jacobian

J ′ =





















−η η 0 0 0

−1 0 Λ 0 0

0 0 −ρ 0 −ρ

0 0 Λ− ρD −ρ −1

0 0 −ρD η −η − ρ





















. (S26)

where the leftmost entries on fourth and fifth row have been set to zero.

With the closure F (X) = (1−X)2

X
used in the main Text, we have D(X) = 1− 1

X2 and the

oscillation criterion reads

H(ρ, η,Λ) = ρ3
(

6 +
2

〈G〉∗2
)

+ 8ηρ2 + ρη (2η + 2− Λ) + η2 < 0. (S27)

where 〈G〉∗ = 〈G〉∗(ρ, η,Λ) is given by expression (6) in the main Text.

Because the derivative of the closure function appears in the coefficient of ρ3, the location

of the oscillation region will typically be very sensitive to the choice of the closure function,

especially in the region around ρ = 1, where the more regular stochastic oscillations are

observed, and even more for larger values of ρ. This probably explains why the agreement

between the instability region of the TME model and the region where regular stochastic

oscillations are observed is not very good for ρ > 1.

A even simpler oscillation criterion can be obtained in the limit of strong feedback, when

Λ → ∞, without having to approximate the Routh-Hurwitz criterion. In this limit, we have

to consider two cases depending on the value of ρ.

If ρ is O(1), then the fixed point of the TME model is determined to leading order in

1/Λ by

< G >∗=

√

ρ (η + ρ)

ρ (η + ρ) + η

√

1

Λ
(S28)

If, however, ρ is sufficiently small that it can be written ρ = K
Λ

with K = O(1), then the
15



leading order solution of the TME fixed point equations is

< G >∗=
1 +

√
1 + 4K

2

1

Λ
(S29)

Note that the average gene activity scales differently with Λ in Eqs. (S28) and (S29).

To obtain the oscillation criterion in the limit of large Λ, we substitute expressions (S28)

and (S29) in the Jacobian (S24) and compute the Hopf Routh-Hurwitz criterion to leading

order in Λ, which considerably simplifies the expression.

We thus find that oscillations occur whenever

−2 ρ2η − 2 ρ3 + η2 − ρ η > 0, [ρ = O(1)] (S30)

if the gene response time is similar to degradation rates, or when

ρ >
η

Λ
[ρ = O(1/Λ)]. (S31)

when the gene response time is large. Note that Eq. (S31) confirms that oscillations appear

for very small ρ in the limit of large Λ, and also that it is consistent with the assumed

scaling.

In spite of their simplicity, the two expressions provide excellent approximations of the

two boundaries of the instability region when Λ is large, as can be seen in Fig. S3. This

allows one to discuss the relative influences of gene response time (described by ρ) and

degradation rate balance (described by η) on the appearance of oscillations.

Interestingly, the conditions (S31) and (S30) can also be recovered by injecting expres-

sions (S28) and (S29) in the approximate criterion (S27), showing that the latter is all the

more accurate as Λ is large.

[1] van Kampen, N. G., 2007. Stochastic processes in physics and chemistry. Elsevier.

[2] Gillespie, C. S., 2009. Moment-closure approximations for mass action models. IET Syst. Biol.

3:52–58.

[3] Morant, P.-E., Q. Thommen, F. Lemaire, C. Vandermoëre, B. Parent, and M. Lefranc, 2009.
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