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The Dilated Cardiomyopathy-Causing Mutation ACTC E361G in Cardiac
Muscle Myofibrils Specifically Abolishes Modulation of Ca2DRegulation by
Phosphorylation of Troponin I
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ABSTRACT Phosphorylation of troponin I by protein kinase A (PKA) reduces Ca2þ sensitivity and increases the rate of Ca2þ

release from troponin C and the rate of relaxation in cardiac muscle. In vitro experiments indicate that mutations that cause
dilated cardiomyopathy (DCM) uncouple this modulation, but this has not been demonstrated in an intact contractile system.
Using a Ca2þ-jump protocol, we measured the effect of the DCM-causing mutation ACTC E361G on the equilibrium and kinetic
parameters of Ca2þ regulation of contractility in single transgenic mouse heart myofibrils. We used propranolol treatment of mice
to reduce the level of troponin I and myosin binding protein C (MyBP-C) phosphorylation in their hearts before isolating the myo-
fibrils. In nontransgenic mouse myofibrils, the Ca2þ sensitivity of force was increased, the fast relaxation phase rate constant,
kREL, was reduced, and the length of the slow linear phase, tLIN, was increased when the troponin I phosphorylation level was
reduced from 1.02 to 0.3 molPi/TnI (EC50 P/unP ¼ 1.8 5 0.2, p < 0.001). Native myofibrils from ACTC E361G transgenic mice
had a 2.4-fold higher Ca2þ sensitivity than nontransgenic mouse myofibrils. Strikingly, the Ca2þ sensitivity and relaxation param-
eters of ACTC E361G myofibrils did not depend on the troponin I phosphorylation level (EC50 P/unP ¼ 0.88 5 0.17, p ¼ 0.39).
Nevertheless, modulation of the Ca2þ sensitivity of ACTC E361G myofibrils by sarcomere length or EMD57033 was indistin-
guishable from that of nontransgenic myofibrils. Overall, EC50 measured in different conditions varied over a 7-fold range.
The time course of relaxation, as defined by tLIN and kREL, was correlated with EC50 but varied by just 2.7- and 3.3-fold, respec-
tively. Our results confirm that troponin I phosphorylation specifically alters the Ca2þ sensitivity of isometric tension and the time
course of relaxation in cardiac muscle myofibrils. Moreover, the DCM-causing mutation ACTC E361G blunts this phosphoryla-
tion-dependent response without affecting other parameters of contraction, including length-dependent activation and the
response to EMD57033.
INTRODUCTION
The heart pumps blood around the body due to the con-
traction of heart muscle cells. The molecular motor of
contraction is the interaction between myosin cross-bridges
in the thick filaments and actin in the thin filaments, and
is powered by hydrolysis of ATP in the myosin cross-
bridge. The rhythmic contraction and relaxation is
controlled by varying the intracellular Ca2þ concentration,
which acts by binding and dissociating from troponin C,
the Ca2þ-sensing component of the cooperative troponin/
tropomyosin switch that is an integral component of the
thin filaments (1).

In normal human heart, this all-or-nothing Ca2þ-depen-
dent control mode is modulated by the activation of the sym-
pathetic nervous system when demand for cardiac output
increases. b-adrenergic stimulation mainly acts via activa-
tion of protein kinase A (PKA) by cyclic AMP and leads
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to an increased heart rate (chronotropy), increased force of
contraction (inotropy), and increased rate of relaxation
(lusitropy) (2,3).

PKA phosphorylates several key intracellular regulatory
proteins, including myosin binding protein C (MyBP-C)
and troponin I within the myofibril. Early studies showed
that b-adrenergic stimulation of contraction is associated
with enhanced phosphorylation of troponin I (4,5),
troponin I is bisphosphorylated at Ser-22 and Ser-23 in
the cardiac-specific N-terminal extension by PKA (6–8),
and the primary effect of phosphorylation of troponin I
in vitro is reduced Ca2þ sensitivity and faster dissociation
of Ca2þ from troponin C (5,9,10). This can cause an in-
crease in the rate of relaxation (the lusitropic response),
which is essential when the heart rate is increased (3,11).
Transgenic mouse studies have demonstrated the physio-
logical importance of troponin I phosphorylation, as
mice with unphosphorylatable troponin I have a blunted
response to b-adrenergic stimulation that leads to an
enhanced susceptibility to develop heart failure under
stress (12–14).
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Dilated cardiomyopathy (DCM) is a major cause of heart
failure in humans, and a substantial proportion of cases
of DCM are inherited. Mutations in the thin-filament pro-
teins (actin, tropomyosin, troponin T, troponin I, and
troponin C) that are associated with familial DCM have
been studied particularly closely (15–17). By studying iso-
lated thin filaments using a quantitative in vitro motility
assay, Memo et al. (18) showed that in all of these DCM-
causing mutations, the myofilament Ca2þ sensitivity is
independent of the level of troponin I phosphorylation;
therefore, by analogy to S22/23A transgenic mice, they pro-
posed that this uncoupling was necessary and sufficient to
cause the DCM phenotype. It is uncertain whether uncou-
pling is also present in intact muscles that produce force,
although indirect evidence from the ACTC E361G DCM
mouse indicated a blunted response to b-adrenergic stimula-
tion that was compatible with the uncoupling of the
relationship between Ca2þ sensitivity and troponin I phos-
phorylation observed in vitro (19,20). In this study, we
examined the relationships between troponin I phosphoryla-
tion and Ca2þ regulation of contractility in single myofibrils
from a mouse model of familial DCM (ACTC E361G) in
comparison with wild-type mice. We measured the effects
of changing the [Ca2þ], troponin I phosphorylation level,
and sarcomere length (SL) on the isometric tension and
relaxation rate after rapid Ca2þ jumps.

Recent studies have shown that Ca2þ sensitivity
decreased 2- to 3-fold between 0% and ~70% bisphosphor-
ylation of troponin I and did not change at higher levels of
phosphorylation (18,21). Since native mouse and human
donor heart preparations have phosphorylation levels in
the 50–70% range (22), the major effects of phosphoryla-
tion would be observed if phosphorylation levels were
reduced rather than increased above normal, which is the
more usual experimental situation (23). Therefore, we
used propranolol treatment of mice to reduce the level of
troponin I and MyBP-C phosphorylation in their hearts
before isolating the myofibrils. Our results confirm that
phosphorylation specifically alters the Ca2þ sensitivity of
isometric tension and the time course of relaxation in
wild-type myofibrils. Moreover, the DCM-causing mutation
ACTC E361G blunts this phosphorylation-dependent
response, as predicted by the in vitro motility studies,
without affecting other parameters of contraction, including
length-dependent activation (LDA) and the response to the
Ca2þ sensitizer EMD57033.
MATERIALS AND METHODS

We used heart muscle from heterozygous ACTC E361G transgenic mice

(previously described by Song et al. (24)) and nontransgenic (NTG) mice

(hybrid strain C57Bl/6xCBA/Ca) as controls (male and female, 4–28 weeks

old). Experiments and animal handling were done in accordance with the

guidelines of the Imperial College London. Mice were killed by cervical

dislocation as required by Schedule I of the UK Animals (Scientific Proce-

dures) Act 1986.
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Propranolol treatment

Mice were anesthetized with 5% isoflurane (IsoFlo, Abbott Laboratories,

Berkshire, UK) v/v in 100% oxygen (0.5mL/min), weighed, and then trans-

ferred to a heated surgical table (VetTech, UK) where anesthesia was

maintained at 2.5% isoflurane v/v in 100% O2 (0.5 mL/min) using a

custom-made nose cone. A bolus of propranolol (8 mg/kg BW; Sigma-

Aldrich, Poole, UK) was injected into the subclavian vein. The mice

were kept in an anesthesia induction chamber for 30 min with 1.5% isoflur-

ane and then sacrificed. The heart was removed and tissue samples (<5 mg)

were dissected from the left ventricle, frozen, and kept in liquid nitrogen

until myofibrils were prepared. Control samples were obtained from anes-

thetized mice that did not receive propranolol.
Isolated myofibrils

Single myofibrils or thin bundles (two to seven myofibrils) were prepared

from one piece of frozen heart sample by permeabilization and subsequent

homogenization. Samples were immersed for 3 h in 2 mL of permeabiliza-

tion solution containing (mM) Tris 10 (pH 7.1), NaCl 132, KCl 5, MgCl2 1,

EGTA 5, dithiothreitol (DTT) 5, NaN3 10, 2,3-butanedione-monoxime

(BDM) 20, and 1% Triton X-100. All of our solutions contained the

following protease inhibitors (mM): chymostatin 10, pepstatin 5, leupeptin

10, trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane) (E-64) 10,

and phenylmethylsulfonyl fluoride (PMSF) 200. Triton X-100 and BDM

were then removed from the permeabilized samples with a washing solution

(like the permeabilization solution, but without Triton X-100 and BDM),

and finally the samples were homogenized for 15 s with an Ultra-Turrax

T10 blender (IKA Werke, Staufen, Germany) to produce a suspension of

myofibrils. The suspension was washed two times by centrifugation and

suspension in the washing solution. The final pellet was dissolved in

300 mL of washing solution and kept on ice for use within 3 days.

In total, we used eight hearts (two from NTG propranolol-treated mice

(4 and 28 weeks old), two from NTG-untreated (4 and 28 weeks old),

two from ACTC E361G propranolol-treated mice (15 weeks and 28 weeks

old), and two from ACTC E361G-untreated mice (5 weeks and 28 weeks

old)). Three to seven myofibrillar preparations were prepared for each

experimental condition.
Apparatus for measurement of myofibril
contractility

We initiated contraction and relaxation using a fast-solution-change system

and sensitive force transducer system, which were similar to those

described previously (25–28). Briefly, our apparatus for measuring force

in single myofibrils was built around an inverted microscope (Eclipse

Ti-U; Nikon UK, Surrey, UK) equipped with two micromanipulators

(MP-285, Sutter Instruments, Novato, and a Huxley-type micromanipu-

lator) and a CCD camera (Rolera XR; Qimaging, Surrey, Canada). The

myofibrils were manipulated by means of two fine glass microneedles

(one of which was a cantilever force sensor) mounted on the micromanip-

ulators. Under illumination of a 5 mW HeNe laser, the shadow of the tip of

the cantilever force sensor was projected on a photodiode position detector

(Spot-2D; UDT Sensors, Hawthorne, CA). The extent of bending of the

cantilever was proportional to the force on the cantilever, so the force pro-

duced by a myofibril was measured from the photodiode’s current response.

We calibrated each cantilever force sensor by measuring its compliance

using the needle of a microammeter to apply known forces to the cantilever

and observing the extent of bending; the range of measured cantilever com-

pliances was 2–14 mm/mN.

We achieved rapid activation and relaxation in myofibrils using an ultra-

fast-solution-change system constructed from a double-barreled micropi-

pette mounted on a stepper motor that switched solutions in less than

10 ms. The micropipette was positioned perpendicular to the long axis of
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the myofibril. The relaxing and activating solutions were applied via

adjacent barrels of the micropipette, with flow being driven by gravity.

The stepper motor controlled the position of the micropipette relative to

the myofibril, thus enabling changes between the two solutions, each flow-

ing in a laminar pattern.

An eight-channel valve (HVXM 8-5; Hamilton, VWR, Lutterworth, UK)

controlled by a stepper motor was used to perfuse one barrel of the micro-

pipette with a range of different activating solutions. We applied eight

different solutions ranging from low to high [Ca2þ] (Fig. 1). The time lag

in a change of solutions was less than 5 s.
Experimental solutions

Activating (3.16–0.1 mMCa2þ) and relaxing (0.01 mMCa2þ) solutions con-
tained (mM) MOPS 10 (pH 7.0), MgATP 5, free Mg2þ 1, DTT 5, phospho-
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FIGURE 1 Measurement of contractility in single mouse cardiac muscle my

cardiac myofibril to different activating Ca2þ concentrations. Myofibrils were

solution using a Ca2þ-jump protocol and various Ca2þ-activating solutions as

at high activating Ca2þ concentrations. (B) Time course of contraction and re

The kinetic parameters maximum force (Fmax), rate of force development (kACT)

phase (kREL) were determined from the traces. The slow-relaxation phase was c

exponential phase of relaxation was considered as the end of slow-relaxation ph

initial linear, nearly isometric force decay period tLIN, followed by an exponentia

exponential fits to the data. Previous experiments (29) showed that kACT¼ kTR, in

17�C.
creatine 10, and creatine kinase (200 U/mL). The Ca-EGTA/EGTA ratio

was set to obtain 10 mM total EGTA and the desired free [Ca2þ]. Potassium
propionate and sodium sulfate were added to adjust the ionic strength of the

final solution to 200 mM. EMD57033 was dissolved in ethanol (30 mM)

and then added in some experiments to activating and relaxing solutions

at a concentration of 30 mM.Myofibrils were incubated in EMD57033-con-

taining relaxing solution for 20–30 min at 17�C before measurements were

started.
Experimental protocol

A small droplet of myofibril solution was placed on the bottom of the glass

chamber (temperature controlled to 17�C) and then the chamber was filled

with relaxing solution. The selected myofibril or thin bundle (1–4 mm in

diameter, 25–100 mm in length) was positioned horizontally between the
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ofibrils. (A) A representative trace shows the contractile responses of the

activated with increasing Ca2þ concentrations alternating with relaxing

indicated in the lower trace. Sometimes myofibrils were initially activated

laxation. The arrows indicate the time when the solutions were switched.

, duration (tLIN) of the slow relaxation phase, and rate of the fast relaxation

ounted from the initiation of micropipette movement. The beginning of the

ase. The relaxation phase is shown over an expanded timescale to show the

l relaxation with a rate constant kREL. The gray solid lines represent the best

dicating the Ca2þ jump, was not rate limiting for kACT. The temperature was

Biophysical Journal 107(10) 2369–2380



2372 Vikhorev et al.
microneedles described above and viewed with the video camera mounted

on the microscope (Fig. S1 in the Supporting Material). Sarcomere length

(SL) was set to 2.17 or 1.9 mm while observing the striation pattern in

the myofibril image using the fast Fourier transform analysis function in

LabVIEW. The length and diameter of the myofibril were measured using

ImageJ (http://imagej.nih.gov/ij/). The cross-sectional area was calculated

from the observed diameter assuming a circular cross-section. Contraction

and relaxation were initiated by the fast-solution-switch system described

above. At each [Ca2þ], a number of activation-relaxation cycles (range

1–5) were performed by the myofibril and the average value of measured

parameters for the set of cycles was reported. Each contraction lasted for

2–5 s. If the myofibril sarcomere appearance or signal did not deteriorate

after a series of contractions at short SL, the same myofibril was also

used for measurements at long SL.
Data collection and analysis

Apparatus control and data recording were done using a data acquisition

device (NI USB-6251; National Instruments, Newbury, UK) and custom-

written software in LabVIEW 2011 (National Instruments). The rate con-

stants for exponential force development upon activation (kACT) and fast

phase of relaxation (kREL) were evaluated by curve-fitting using the

Levenberg-Marquardt nonlinear least-square algorithm in LabVIEW.

The maximum force was obtained by curve-fitting force development

upon activation. The force data from the force-[Ca2þ] experiments were

fitted to the Hill equation: y ¼ y0 þ Fmax[Ca
2þ]nH/(EC50

nH þ [Ca2þ]nH)
by adjusting the values of nH and EC50. Data were fitted and compared

by means of an unpaired t-test using GraphPad Prism 6 (GraphPad Soft-

ware, San Diego, CA). Best-fit parameters marked as ambiguous by

GraphPad Prism were excluded from further analysis. In some cases, the

bottom plateau (y0) was constrained to a constant value of 0.

Additionally, a paired t-test was also used to compare EC50 and Fmax

values at short and long SLs. Table 1 reports the means and SE of EC50,

nH, Fmax, kACT, tLIN, and kREL values at maximum activation, as determined

in six to 16 experiments with separate myofibrils. During the slow-relaxa-

tion phase, active tension essentially did not change, which made it difficult
TABLE 1 Summary values for Ca2D-regulated myofibril contractio

mutation, and EMD57033

SL Fmax, kN/m
2 EC50, mM

NTG 2.17 P 100.9 5 6.3(14) 0.93 5 0.06(11) 10.43

unP 87.1 5 6.0(16) 0.51 5 0.06(14)yyy 4.74 5

PþEMD 73.0 5 10.1(6)x 0.29 5 0.06(7)xxx 3.96

unPþEMD 87.0 5 9.0(8) 0.17 5 0.05(11)xxx 3.96

1.9 P 71.0 5 6.4(7)zz 1.18 5 0.16(7) 5.17

unP 75.4 5 4.7(13) 0.55 5 0.06(12)yyy 4.85

PþEMD 73.3 5 4.9(11) 0.35 5 0.06(8)xxx 6.43

unPþEMD 87.9 5 8.2(9) 0.30 5 0.07(10)x 2.48

ACTC

E361G

2.17 P 93.5 5 8.9(11) 0.38 5 0.05 (12)*** 5.39

unP 89.3 5 8.6(10) 0.43 5 0.06 (10) 4.48

unPþEMD 90.0 5 7.2(8) 0.21 5 0.05 (8)xxx 2.73

1.9 P 87.3 5 9.2(10) 0.66 5 0.18 (6) 5.78

unP 71.1 5 6.8(7) 0.74 5 0.11 (7)yz 7.52

unPþEMD 78.1 5 5.1(9) 0.22 5 0.03(9)xxx 4.31

The maximal developed force (Fmax), concentration of Ca
2þ for half-maximal fo

tion to the data from single experiments. Fmax was normalized to the myofibril

respectively) were determined from the best fit to an exponential equation. The tim

as tLIN. Each data point is the average value 5 SE for the measurements obtain

fibrils; unP, unphosphorylated myofibrils; EMD, EMD57033. The temperature

*p < 0.05, **p < 0.01, ***p < 0.001; ACTC E361G compared with NTG.
yp < 0.05, yyp < 0.01, yyyp < 0.001; unphosphorylated compared with phospho
zp < 0.05.zzp < 0.01; 1.9 mm SL compared with 2.17 mm SL.
xp < 0.05, xxp < 0.01, xxxp < 0.001; EMD57033 incubated compared with no E
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to accurately determine the rate constant kLIN for the slow-relaxation phase.

kLIN was not significantly affected by phosphorylation, changes in SL,

EMD57033, or the mutation ACTC E361G (mean values range from 0.20

to 0.51 s�1), and thus is not discussed here (more information is provided

in Fig. S2 and Fig. S5). For the illustrations, the Ca2þ-concentration plots

show the mean and SE values of the parameter studied at each Ca2þ con-

centration and the curve fitted of the mean data points.
RESULTS

Propranolol treatment dephosphorylates mouse
heart myofibrils

We studied myofibrils from NTG C57Bl/6xCBA/Ca mice
and transgenic mice expressing 50% of their heart actin
as the DCM-causing ACTC E361G mutation. NTG and
mutant mice had similar levels of troponin I and MyBP-C
phosphorylation. We found that after treatment with pro-
pranolol, the phosphorylation levels of both troponin I
and MyBP-C, particularly the physiologically relevant
bisphosphorylated species, were substantially reduced
(Fig. 2). The contractilities of NTG and ACTC E361G
phosphorylated and dephosphorylated myofibrils were
compared.
MyBP-C and troponin I phosphorylation modulate
myofibril contractility

We measured contraction-relaxation cycles in myofibrils
with graded increases in [Ca2þ] (Fig. 1). The Ca2þ sensi-
tivity of isometric force in the unphosphorylated myofibrils
was always greater than that of the phosphorylated
n: effects of phosphorylation, sarcomere length, ACTC E361G

nH kACT, s
�1 tLIN, ms kREL, s

�1

5 1.84(10) 4.16 5 0.43(11) 50.8 5 3.5(12) 35.0 5 4.0(10)

0.66(13)yy 4.50 5 0.24(15) 67.0 5 4.2(16)y 23.2 5 2.8(11)yyy

5 1.04(7)x 4.25 5 0.31(8) 125.8 5 16.8(7)xxx 12.8 5 2.2(6)xxx

5 0.98(10) 4.61 5 0.65(9) 103.9 5 8.4(8)xxx 10.7 5 2.1(8)xx

5 0.71(7)z 4.26 5 0.44(7) 50.0 5 7.1(7) 31.9 5 5.2(6)

5 1.12(9) 4.32 5 0.44(12) 68.4 5 6.9(11)y 27.2 5 3.6(10)

5 2.12(7) 4.89 5 0.40(12) 92.1 5 11.8(9)xx 18.6 5 3.3(8)xx

5 0.71(9) 4.71 5 0.25(12) 102.5 5 9.4(10) 12.5 5 2.3(8)xx

5 1.26(9)* 4.51 5 0.32(13) 75.4 5 6.5 (10)** 21.6 5 2.8 (10)***

5 0.70(8) 4.12 5 0.32(11) 70.8 5 9.7(11) 21.6 5 2.1(10)

5 0.93(7) 3.66 5 0.30(8) 135.6 5 25.0(7)x 12.5 5 2.6(7)x

5 1.60(6) 4.86 5 0.37 (9) 71.3 5 8.6(7) 29.85 3.0 (7)

5 2.28(6) 3.55 5 0.49(6) 60.0 5 8.9(6) 26.8 5 5.9(6)

5 0.83(8) 4.40 5 0.18(11) 106.8 5 15.6(8)x 13.9 5 5.2(8)

rce (EC50), and Hill coefficient (nH) were estimated by fitting the Hill equa-

cross-section area. Activation and relaxation rate constants (kACT and kREL,

e delay for the fast exponential relaxation after the solution switch is shown

ed on different myofibrils (shown in parentheses). P, phosphorylated myo-

was 17�C.

rylated.

MD57033.
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myofibrils (EC50 P/unP ¼ 2.1 5 0.4� at 1.9 mm SL, p <
0.001; and 1.8 5 0.2� at 2.17 SL, p < 0.001; Fig. 3;
Table 1). The Hill coefficient was greater in phosphorylated
compared with unphosphorylated myofibrils (2.2 5 0.5
fold, p ¼ 0.007). The shift in Ca2þ sensitivity is the same
as that observed in isolated mouse thin filaments measured
by the in vitro motility assay (EC50 P/unP¼ 2.05 0.2 (18)).

The rate constant for contraction, kACT, was not affected
by phosphorylation, but changes in the relaxation parame-
ters indicated that relaxation was faster in the phosphory-
lated myofibrils (tLIN phosphorylated myofibrils ¼ 50.8 5
3.5 ms, unphosphorylated myofibrils ¼ 67.0 5 4.2 ms,
p ¼ 0.015; kREL phosphorylated myofibrils ¼ 35.0 5
4.0 s�1, unphosphorylated myofibrils ¼23.2 5 2.8 s�1,
p < 0.001 at 2.17 mm SL; see Table 1). The difference in
relaxation rate parameters between phosphorylated and
unphosphorylated NTG myofibrils was less pronounced at
short SLs.
Effect of the ACTC E361G mutation on myofibril
contractility

At both long and short SLs, native phosphorylated ACTC
E361G mouse myofibrils were activated at lower Ca2þ con-
centrations than NTG myofibrils. For example, EC50 of
ACTC E361G myofibrils at 2.17 mm SL ¼ 0.38 5
0.05mM, comparedwith 0.935 0.06mMfor theNTGmouse
myofibrils (p < 0.001). Correspondingly, relaxation of
ACTC E361G myofibrils was significantly slower than that
of NTG myofibrils (longer tLIN and slower kREL compared
with NTG; Fig. 4; Table 1). The Hill coefficient was
lower for ACTC E361G mice (5.39 5 1.26 vs. 10.43 5
1.84, p < 0.05). There was no significant difference in the
maximum force produced or the rate of force development
(Table 1).
The ACTC E361G mutation uncouples
phosphorylation-dependent changes in
contractile parameters

In contrast toNTGmousemyofibrils, theCa2þ sensitivitywas
the same independently of the phosphorylation level (EC50

for phosphorylated ACTC E361G ¼ 0.38 5 0.05 mM, and
for unphosphorylated ¼ 0.43 5 0.06 mM (2.17 mm SL);
p ¼ 0.394). Similarly, there was no significant phosphoryla-
tion-dependent change in the time course of relaxation at fully
activating [Ca2þ] (p¼ 0.703 (tLIN), p¼ 0.912 (kREL); Fig. 5).
The uncoupling observed inmyofibrils corresponds to the un-
coupling previously identified in isolated thin filaments car-
rying this mutation (18,24). On the other hand, modulation
of Ca2þ sensitivity in ACTC E361G myofibrils by a change
in SL or addition of the Ca2þ sensitizer EMD57033 was
Biophysical Journal 107(10) 2369–2380
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similar to that observed for NTG myofibrils (Table 1; Figs. 6
and S3).
Effect of the Ca2D sensitizer EMD57033 on
myofibril contractility

We found that 30 mMEMD57033 increased the myofibrillar
Ca2þ sensitivity by 1.8- to 3.4-fold and the maximum force
by 0–17% (Table 1). EMD57033 also slowed relaxation, but
did not affect kACT significantly (4.16 5 0.43 s�1 and
4.25 5 0.31 s�1 in the absence and presence of
EMD57033, respectively; p ¼ 0.868, NTG SL ¼ 2.17).
Interestingly, the Ca2þ-sensitizing effect was independent
of the myofibril phosphorylation level, the SL, and the pres-
ence of the ACTC E361G mutation (Fig. S3; Table 1).

Since EMD57033 strongly decreases the Ca2þ level
required to initiate contraction, we used the myosin inhibitor
BDM in two additional experiments to ensure that the myo-
fibrils were fully relaxed in the relaxing solution. At 20 s
after a regular contraction-relaxation, a second relaxing
solution with 40 mM BDM and without EMD57033 was
applied to the myofibrils for 10 s. In these experiments,
we used ACTC E361G dephosphorylated myofibrils. We
did not see any changes in the force level. Thus, BDM did
not increase myofibrillar relaxation further or such changes
were less than 3% of the maximum force and could not be
seen because of the signal fluctuations.
Biophysical Journal 107(10) 2369–2380
Effect of SL change on Ca2D regulation

Measurements of Ca2þ activation in NTG myofibrils at 1.9
and 2.17 mm SL demonstrated LDA, with an increase in
Ca2þ sensitivity of 1.24- to 1.32-fold after stretch, in phos-
phorylated and unphosphorylated myofibrils. The maximum
developed force increased by 42% and 29% in phosphory-
lated and unphosphorylated myofibrils, respectively, upon
stretch. tLIN increased and kREL decreased upon stretch, indi-
cating a slower relaxation rate (Table 1; Fig. 6). LDA was
not compromised by the ACTC E361G mutation or
EMD57033 treatment.
DISCUSSION

We used the rapid Ca2þ-jump technique to investigate the
equilibria and kinetics of Ca2þ-regulation of mouse heart
myofibrils when it is modulated by PKA-dependent phos-
phorylation of contractile proteins. We found that a
DCM-causing mutation in actin (ACTC E361G) specifically
interferes with this modulation of Ca2þ sensitivity.
Modulation of Ca2D sensitivity by troponin I
phosphorylation

The troponin I of NTG mice hearts was phosphorylated at a
level of 1.025 0.03 mol Pi/mol (20% bisphosphorylation at
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Ser-22/23) in common with previous measurements (22,24).
We achieved substantial in vivo dephosphorylation of
troponin I and MyBP-C by treating the mice with propran-
olol before extracting the heart and preparing myofibrils
(Fig. 2) (30). Total phosphorylation levels were reduced to
1/3 and physiologically relevant bisphosphorylation was
reduced to less than 1/20.

Several studies have indicated that the major change in
Ca2þ sensitivity occurs over the range of 0–70% occupancy
of Ser-22 and Ser-23, with a relatively small decrease in
Ca2þ sensitivity at higher levels of phosphorylation of
troponin I (4,18,21). The basal level of phosphorylation in
mouse and human donor heart samples is in the range of
50–75% occupancy and there is considerable uncertainty
as to whether this is equal to or greater than the normal
in vivo phosphorylation level (31,32). Since the low phos-
phorylation range could be accessed by b-blocker treatment
of whole mouse, it is likely that it represents a physiologi-
cally relevant range.

An increase in Ca2þ sensitivity of isometric force was
observed in NTG mouse myofibrils after dephosphory-
lation, and its magnitude was similar to that reported
for single thin filaments by in vitro motility assay
(18,24) and in skinned heart muscle fibers and myofibrils
(10,23,33). The Hill coefficient was significantly smaller
in unphosphorylated myofibrils. Changes in the phosphor-
ylation level of troponin I did not affect the maximum
force but did increase the relaxation rate at maximally
activating [Ca2þ], in accord with previous observations
in skinned cardiac fibers (10,11). The phosphorylation-
dependent increase in the rates of relaxation that accom-
panies decreased Ca2þ sensitivity (Fig. 3) may directly
contribute to the lusitropic effect of troponin I phosphor-
ylation in addition to its likely effect on sarcoplasmic
Ca2þ buffering (34).

It should be noted that propranolol treatment dephosphor-
ylates both troponin I and MyBP-C, but the effects on Ca2þ

regulation observed here reflect only the known properties
of troponin I phosphorylation. MyBP-C phosphorylation
has been shown to modulate the rate of stretch activation
(35); however, all of the measurements presented here are
isometric. It is interesting to note that steady-state LDA
was not significantly affected by the level of troponin I
phosphorylation, being 1.24� in phosphorylated and
1.32� in unphosphorylated myofibrils. The impact of phos-
phorylation on LDA has not been extensively studied, but
Rao et al. (36) reported similar LDA values in native (phos-
phorylated) and S23/24A exchanged (unphosphorylatable)
mouse heart fibers. They also reported that after PKA treat-
ment of NTG, S23/24A-exchanged, or S23/24D (pseudo-
phosphorylated) heart fibers, LDA became negligible.
Thus, it seems that supraphysiological phosphorylation, pre-
sumably of some species other than troponin I, may be detri-
mental to LDA.
Biophysical Journal 107(10) 2369–2380
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The DCM-causing mutation ACTC E361G
uncouples troponin I phosphorylation from
changes in Ca2D sensitivity and relaxation rate

When we studied myofibrils from the ACTC E361G trans-
genic mouse model of DCM, we found that the Ca2þ sensi-
tivity of isometric force was not dependent on troponin I
phosphorylation; likewise, there was no significant differ-
ence in kACT or kREL between natively phosphorylated and
unphosphorylated myofibrils. This uncoupling effect of
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the ACTC E361G mutation was previously reported for

isolated thin filaments by in vitro motility assay and con-

firms that uncoupling also occurs in the fully assembled

myofibril. We previously reported that many other muta-

tions associated with DCM uncouple the phosphorylation

dependence of Ca2þ sensitivity (18). Interestingly, LDA

and the Ca2þ-sensitizing effect of EMD57033 were not

affected by the ACTC E361G mutation. Similarly, Inoue
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1.6� to 1.4�) in heterozygous TNNT2 DK210 KI mice
compared with NTG mice.

The observation of uncoupling in myofibrils is compat-
ible with the hypothesis that a specific interaction between
the N-terminus of cardiac troponin I (residues 1-30) and
troponin C is responsible for the higher Ca2þ sensitivity of
unphosphorylated troponin (38–40). We proposed that this
interaction is uniquely unstable and can be disrupted by
phosphorylation at Ser-22/23 or by mutations and other per-
turbations of the myofilaments (18,41). Modulation of
troponin function by phosphorylation of the N-terminal
extension of troponin I is unique to cardiac muscle and ap-
pears to be structurally and functionally independent of
Ca2þ switching (42,43).

Compared with myofibrils from NTG mice, those from
ACTC E361G mice had a substantially higher Ca2þ sensi-
tivity of isometric tension (Fig. 4). In other systems, this
mutation also increased Ca2þ sensitivity, although the
magnitude of the difference was quite small (1.05-fold for
in vitro motility assay of single thin filaments and 1.28-
fold for skinned papillary muscle), whereas with skeletal
muscle troponin, ACTC E361G decreased Ca2þ sensitivity
(24). For several DCM mutations, including ACTC
E361G, it has been shown that the effect of a mutation on
Ca2þ sensitivity is variable and depends on the measure-
ment conditions (see Table 2 of Memo et al. (18)). In addi-
tion, the hypothesis that Ca2þ sensitivity is always reduced
by DCM-causing mutations is no longer tenable; other ex-
amples of DCMmutations that can increase Ca2þ sensitivity
include TNNC1 G159D (44), TPM1 D230N (18), and TPM1
E54K (45).

These results support our hypothesis that the primary ab-
normality in DCM-causing mutations in thin-filament pro-
teins like ACTC E361G is uncoupling, and not a change in
Ca2þ sensitivity. Uncoupling is likely to be of physiological
importance for the development of the DCM phenotype.
Abolition of the normal response to b-adrenergic stimula-
tion is expected to reduce cardiac reserve and predispose
to heart failure (13,14). We have demonstrated that in the
whole ACTC E361G mouse, the response to the b1 agonist
dobutamine is indeed strongly blunted (24) and the reduced
cardiac reserve can lead to the development of heart failure
under stress (20,46).
Ca2D dependence of contraction and relaxation
rates

Since we measured the kinetics of Ca2þ-activated contrac-
tion and relaxation over a wide range of EC50 values, it is
instructive to consider the relationship between Ca2þ

switching and rate constants. The overall pattern of results
demonstrated three features: 1), Ca2þ regulates kACT and
isometric tension, but not tLIN or kREL; 2), changes in
Ca2þ sensitivity are related to changes in tLIN or kREL, but
not kACT; and 3), modulation of Ca2þ sensitivity by LDA
is unrelated to modulation of Ca2þ sensitivity by phosphor-
ylation changes or the ACTC E361G mutation.

The rate of cross-bridge attachment is dependent on the
fraction of switched-on troponin-tropomyosin units on the
target thin filaments because this determines the probability
of attachment. Thin-filament switching and cross-bridge
recruitment are controlled by [Ca2þ]; therefore, kACT is ex-
pected to be Ca2þ dependent, as shown in Fig. 7 A and pre-
viously demonstrated for kACT and kTR (11,26,47–50). In
contrast, kREL was found to be independent of [Ca2þ].

We observed that changes in the myofilament Ca2þ sensi-
tivity, whether due to introducing a mutation, changing
SL, changing the troponin I phosphorylation level, or
adding EMD57033, were all associated with corresponding
changes in the relaxation parameters at maximally acti-
vating [Ca2þ] (Fig. 7 B). The relationship is not direct, since
a 7-fold change in EC50 led to only a 2.7-fold change in tLIN
and a 3.3-fold change in kREL. In contrast, kACT was not
correlated with EC50. Previous measurements in murine
myofibrils also showed a relationship between tLIN and
kREL values and EC50 (50), whereas studies in skeletal mus-
cle myofibrils and in human heart myofibrils did not (23,26).

Ca2þ sensitivity is determined by the affinity of Ca2þ for
troponin C in thin filaments (45). The decrease in Ca2þ

sensitivity observed when cardiac troponin I is phosphory-
lated is linked to an increase in the rate of Ca2þ dissociation
from troponin C in thin filaments (9,51), and this provides a
potential link between Ca2þ sensitivity and the rate of
relaxation.

Relaxation is initiated by Ca2þ dissociating from troponin
C coupled to the release of the C-terminus of troponin I from
troponin C and its attachment to actin, where it blocks cross-
bridge binding cooperatively (9,52). The lag in the force
trace has been ascribed to the time taken for the occupancy
of cycling cross-bridges to drop below the threshold for
cooperative activation of the thin filament, and the subse-
quent rapid-relaxation phase corresponds to the detachment
of the remaining cross-bridges, where reattachment is pre-
vented by the Ca2þ-free troponin switch (53,54).

Little et al. (55) pointed out that although cross-bridge
detachment is the slowest process in relaxation at low
temperatures, the detachment rate increases strongly with
temperature, whereas Ca2þ dissociation from troponin C
does not; therefore, it is possible for Ca2þ dissociation to
become partly rate limiting at higher temperatures. Accord-
ing to the model of Stehle et al. (49), the apparent rate of
cross-bridge detachment, g, is given by the value of kACT
when extrapolated to zero force. Plots of kACT versus force
(Fig. S4) indicate that in our experiments, gAPP is ~2 s�1

independently of the phosphorylation level and the ACTC
E361G mutation. Our tLIN and kREL measurements suggest
that the time course of relaxation could be partly deter-
mined by the rate of Ca2þ dissociation in this system.
Variations in the relative rates of cross-bridge detachment
and Ca2þ dissociation in different experimental systems
Biophysical Journal 107(10) 2369–2380



Ca2+(µM)

k A
CT

 (s
-1

)

0.1 1
0

2

4

6

0.0 0.5 1.0 1.5
0

30

60

90

120

150

0

5

10

15

20

25

30

35

40

EC50 (µM)

t LI
N 

(m
s)

kACT  (s -1) and kREL (s -1)

tLIN ( s-1)kACT (s-1) kREL (s-1) 

Ca2+(µM)

k R
EL

 (s
-1

)

0.1 1
0

10

20

30

40

50

A B

FIGURE 7 Ca2þ dependence of myofibril contraction and relaxation rates. (A) Relationship between Ca2þ and kACT and kREL for phosphorylated NTG

myofibrils (solid circles, solid line), unphosphorylated NTG myofibrils (open circles, dashed line), and phosphorylated ACTC E361G myofibrils (open

triangles, dotted line) at SL ¼ 2.17. Values are means 5 SE. (B) Relationship among kACT (solid squares), tLIN (open circles), kREL (solid circles), and

EC50 determined under 14 different conditions (data from Table 1).

2378 Vikhorev et al.
could determine whether or not the relaxation rate is
related to Ca2þ sensitivity.

Myofibrils are the simplest contractile system in which
LDA can be measured. In our myofibrils, we observed
LDA of similar magnitude to that reported in skinned
myocytes and muscle fibers, thus confirming that LDA
is sarcomere based (56–58). It is interesting to note that
in our myofibrils, LDA was apparently independent of
MyBP-C and troponin I phosphorylation and the DCM
mutation ACTC E361G.
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FIGURE S1 

A small bundle of myofibrils positioned horizontally between two microneedles 

A small group of myofibrils (3-4 myofibrils; A, wild-type; B, ACTC E361G) arranged in a 
stack were pre-stretched to a SL of 2.17 µm. Due to force probe compliance, the average SL 
of contracted myofibrils at maximum force became 2.07 and 1.82 µm, respectively for the 
myofibrils pre-stretch to a SL of 2.17 and 1.90.  The changes in SL were about 2-6% in all 
conditions. 
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FIGURE S2  

The effect of SL change, dephosphorylation, EMD 57033 and mutation ACTC E361G on the 
parameter kLIN.  

(A) During the slow relaxation phase an active tension is essentially not changing.  After a 
certain time lag (tLIN) the slow phase (characterized also by a rate constant kLIN) is followed 
by a rapid exponential force decay with a rate constant kREL. A short transition period can be 
seen during which the system shifts from the linear phase to the exponential. The transition 
phase was not entered neither the regression line calculation nor the exponential. The kLIN 
was calculated from the slope of the linear fit (kLIN=slope/Fmax). 
 
(B) The kLIN measured in different conditions, compared to control (first black column in B; 
NTG myofibrils, SL = 2.17, phosphorylated, untreated). Values are means ± SE, n = 5-9. 
There was no difference (p ≥ 0.35) in kLIN.  
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FIGURE S3 

The effect of EMD57033 on mouse myofibril contractility 

(A) The effect of EMD57033 on force-Ca2+ relationship. The Ca2+-force sensitivity curve for 
treated myofibrils (open circles, dashed line) is shifted to the left, as compared to untreated 
NTG myofibrils (solid circles, solid line). Sarcomere length was 2.17 µm. (B) The increase in 
Ca2+ sensitivity (1/EC50) resulting from incubation with EMD57033.  Values are means. ***P 
< 0.001.  Data from Table 1. 
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FIGURE S4  

Relationship of myofibril contraction and relaxation rates to developed force 

Relationship between Force and kACT and kREL for phosphorylated NTG myofibrils (solid 
circles, solid line), unphosphorylated NTG myofibrils (open circles, dashed line) and 
phosphorylated ACTC E361G myofibrils (open triangles, dotted line) at SL=2.17. Values are 
means ± SE.  
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FIGURE S5  

The effect of mouse age on myofibril Ca2+-sensitivity 

Comparison of EC50 values between phosphorylated and unphosphorylated myofibrils from 
4-week-old (A) and 28-week-old (B). Values are means ± SE, n = 5-8. **P < 0.01. 

 

Phosphorylated myofibrils from 4-week-old mouse had slightly higher calcium sensitivity of 
force than myofibrils obtained from 28-week-old mouse (0.79 ± 0.09 vs. 1.05 ± 0.04 µM, p = 
0.02).  There was no difference in nH. Dephosphorylation of sarcomere proteins increased 
calcium sensitivity by 1.73 and 1.84 fold in 4-week-old and 28-week-old mice, respectively. 
The age difference between unphosphorylated samples was not significant (p=0.37).   
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