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Juxtacrine Signaling Is Inherently Noisy
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ABSTRACT Juxtacrine signaling is an important class of signaling systems that plays a crucial role in various developmental
processes ranging from coordination of differentiation between neighboring cells to guiding axon growth during neurogenesis.
Such signaling systems rely on the interaction between receptors on one cell and trans-membrane ligands on themembrane of a
neighboring cell. Like other signaling systems, the ability of signal-receiving cells to accurately determine the concentration of
ligands, is affected by stochastic diffusion processes. However, it is not clear how restriction of ligand movement to the two-
dimensional (2D) cell membrane in juxtacrine signaling affects the accuracy of ligand sensing. In this study, we use a statistical
mechanics approach, to show that long integration times, from around one second to several hours, are required to reach high-
sensing accuracy (better than 10%). Surprisingly, the accuracy of sensing cannot be significantly improved, neither by
increasing the number of receptors above three to five receptors per contact area, nor by increasing the contact area between
cells. We show that these results impose stringent constraints on the dynamics of processes relying on juxtacrine signaling sys-
tems, such as axon guidance mediated by Ephrins and developmental patterns mediated by the Notch pathway.
INTRODUCTION
Noise is a fundamental property of biological systems that
affects biological functions ranging from transcriptional
processes and chemotactic behavior at the single cell level
to tissue development at the organismal level (1). Although
many biological systems have to find ways to deal with
noise to function reproducibly, other systems use noise for
generating random processes or bet hedging strategies (2).
One source of noise is the inherently stochastic behavior
attributable to random diffusion of molecules in the environ-
ment. Such a diffusion driven noise, limits the accuracy at
which the concentration of the ligand can be measured by
cell surface receptors. This problem was first addressed by
Berg and Purcell in 1977, who estimated the statistical fluc-
tuations in ligand concentration and its effect on the accu-
racy of measurement by the cell (3). They showed that
ligand diffusion introduces a counting error at the receptors,
setting a noise floor for measuring ligand concentration.
Based on the probability of a receptor to be occupied,
they computed the fluctuation in receptor occupancy.
Finally, relating the fluctuation in receptor occupancy with
the uncertainty in ligand concentration at equilibrium,
they obtained the relative uncertainty in the determination
of the ligand concentration. This computation was also
generalized for a system of many receptors.

A different approach using statistical mechanics and the
fluctuation dissipation theorem was used to generalize the
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results of Berg and Purcell to a broader range of cases
(4–6). This approach was based on using the fluctuations
in receptor occupancy as a form of thermal noise, which
allows using the fluctuation dissipation theorem rather
than considering the microscopic details of the receptor-
ligand interactions. They were able to separate noise coming
from the binding/unbinding from the noise due to the ligand
diffusion. The noise floor attributable to diffusion coincides
with the results obtained by Berg and Purcell.

These methods provided an expression for the accuracy of
the determination of ligand concentration, dc=c, given an
average ligand concentration, c. For one receptor and for
ligands diffusing in three dimensions (3D), the accuracy
attributable to random diffusion of ligands is given by the
following (3,4):

dc

c
z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pD3cta

p ; (1)

where D3 is the ligand diffusion coefficient in 3D, t is the

measurement integration time, and a is the radius of the
receptor.

It was also shown that increasing the number of receptors,
m, which are used for sensing ligands, improves the accu-
racy. This improvement in accuracy is proportional to
1=

ffiffiffiffi
m

p
at low m, but reaches saturation for high values of

m. This saturation of the accuracy occurs because at some
level no additional information is provided by adding
more receptors, given a finite cell size (or finite size of re-
ceptor cluster).

Later works extended the analysis to include more
detailed or cooperative ligand-receptor interactions (7–12),
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lateral diffusion of receptors on the membrane (5), endocy-
tosis of bound receptor-ligand pairs (6), and combined
3D and one dimensional (1D) diffusion for the case of tran-
scription factors binding to DNA (13). The analysis was
applied to several biological sensing processes including
bacterial chemotaxis, intracellular signaling in Escherichia
coli (E. coli), regulation by transcription factors, dynamics
of flagellar motors, and neurotransmission in neural
synapses (4,5).

In this study, we consider the effect of noise in an impor-
tant class of signaling systems, termed juxtacrine signaling
systems, in which the receptors on the membrane of one cell
interact with ligands diffusing along the membrane of a
neighboring cell (Fig. 1). Examples for such systems
include the Notch signaling pathway, ephrins, semaphorins,
and T-cell receptor-antigen interactions (14–17). The main
difference between these systems and the systems consid-
ered previously is that both receptors and ligands diffuse
in two dimensions (2D).

We show that the accuracy of sensing in 2D exhibits a
very weak, logarithmic, dependence on the relevant length
scales of the system. As a result of this weak dependence,
the accuracy of ligand sensing is not significantly improved
by having more than three to five receptors on the contact
area between cells. Furthermore, increasing the contact
area itself does not improve the accuracy either. We show
that relatively long integration times, from around one sec-
ond to several hours are required to reach accuracy of better
than 10% (compared to milliseconds in typical 3D signaling
systems). We discuss the implications of these results for
biological processes relying on juxtacrine signaling sys-
tems, such as lateral inhibition and boundary formation
mediated by the Notch signaling pathway and axon guid-
ance mediated by cues from the ephrin signaling pathway.
ligand
cell

receptor
cell

FIGURE 1 Schematic representation of a juxtacrine signaling system.

We consider a geometry in which receptors on one cell (blue symbols in

right cell) interact with ligands diffusing on the membrane of a neighboring

cell (red symbols in the left cell). Ligands are assumed to diffuse freely on

the membrane of the ligand cell and interact with receptors located at the

contact area between the cells.
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METHODS

Calculation of ligand concentration fluctuations
in the 2D case

In our analysis, we consider one cell that expresses receptors (receptor cell)

that comes in contact with a cell that expresses membrane-bound ligands

(ligand cell, Fig. 1). We assume that the contact area is small compared

with the total surface area of the cell membrane.We assume that the concen-

tration of receptors is much smaller than that of the ligands, so that the recep-

tors can be considered in terms of a discrete variable whereas the ligands are

considered as continuous concentration. In the opposite case, where there are

few ligands and many receptors, the ligands can be treated as a discrete var-

iable and the receptors as a continuous concentration. The calculation of fluc-

tuations in both cases is equivalent with the exception that the variables for

receptors and ligands are exchanged. The special case where the concentra-

tions of receptors and ligands are similar is not considered here.

We define the ligand concentration on the membrane of the ligand cell by

c(x,t). We also assume that ligands are continuously recycled in and out of

the membrane uniformly (e.g., through endocytosis and exocytosis (18,19))

with rates kendo and kexo, respectively. The pursuing ligand dynamics is

dictated by the following diffusion equation:

vcðx; tÞ
vt

þ V , j ¼ �kendocðx; tÞ þ kexoccyto; (2)

where j is the ligands diffusion current on the cell membrane and to first

order can be written as j ¼ �D2Vc, with D being the 2D diffusion
2

coefficient for the ligands on the cell membrane. ccyto is the concentration

of a cytoplasmic pool of the ligands that is assumed to be constant in this

study. Given our assumption that the cell area is much larger than the

contact area, we impose boundary conditions such that the concentration

far from the contact is equal to the average concentration, namely,

cðN; tÞ ¼ c ¼ kexoccyto=kendo.

Following standard procedure in statistical mechanics (20), we add

noise to the system by assuming a random perturbation in the chemical

potential (see Supporting Material for detailed derivation). We allow a

small perturbation, dc�ðx; tÞ, around the mean ligand concentration, c
such that c ¼ cþ dc� and calculate the power spectrum of dc� defined by

the following:

Sðu; kÞhhdc�ðu; kÞdc�ð�u;�kÞi: (3)

Here, h.i represents an ensemble average and dc�ðu; kÞ is a Fourier trans-
form of dc�ðx; tÞ over all temporal and spatial frequencies u and k:
dc�ðu; kÞ ¼
Z

dt

Z
d2xeið�k , xþutÞdc�ðx; tÞ: (4)

Performing the calculation for the 2D case, the expression for the power

spectrum is given by the following:
Sðu; kÞ ¼ 2cðD2k
2 þ kendoÞ

u2 þ ðD2k2 þ kendoÞ2
: (5)

Calculation of accuracy of measurement by a
single receptor

Next, we consider a single receptor that can measure ligand concentration

in a radius roughly equivalent to its size, a, over an integration time, t. We

take the limit where the ligands that arrive at the receptors bind and are

immediately released. This limit corresponds to the perfect monitoring

disk approximation where the receptor simply counts the number of ligands

diffusing through an area a (3,21). The effect of finite binding and unbind-

ing has been previously taken into account (for the 3D case) and only
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reduces the accuracy of measurement (3,4). The average ligand concentra-

tion measured by a receptor will be given by the following:

~cðt; xÞ ¼
Z

d2x0dt0 wrðx� x0Þkrðt � t0Þcðt0; x0Þ; (6)

where the function wrðx� x0Þ defines the receptor spatial distribution and

krðt � t0Þ defines the receptor temporal response. We choose Gaussian dis-
tribution profiles for wrðx� x0Þ and krðt � t0Þ with standard deviations of a
and t, respectively. We then calculate the fluctuations measured by the re-

ceptor using (see Supporting Material) the following:

hd~cðt; xÞd~cðt; xÞi ¼
Z

dud2k

ð2pÞ3 Sðu; kÞe
�t2u2

e�a2k2 (7)

The accuracy of measurement of ligand concentration by a single receptorffiffiffiffiffiffiffiffiffiffiffi
2

q

can now be defined as dc=ch hd~c i=c.

Performing the integration in Eq. 7 we obtain an expression for the accu-

racy (see Supporting Material) that can be approximated by the following:

dc

c
z

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
pD2ct

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
l

a

�s
; (8)

where, l, is the diffusion length scale of the ligand on the cell membrane. If

the integration time is longer than the typical endocytosis time, namelywhen
�

t[k�1
endo, then the diffusion length scale is defined by lh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2=kendo

p
. In the

opposite limit, if the integration time is shorter than the typical endocytosis

time, namely when t � k�1
endo, then the diffusion length scale is defined by

l�h
ffiffiffiffiffiffiffiffi
D2t

p
. Equation 8 is valid for l; l�[a, which is typically the case

because both l and l� are expected to be of the order of few microns (based

on typical diffusion constants, exchange rates, and integration times—see

Table 1 (22–30)) and a is ~ 1 to 10 nm for typical receptors.
Calculation of accuracy of measurement by
multiple receptors

Now we consider m receptors located on the contact surface between the

cells (Fig. 1). Ligands are assumed to diffuse freely in 2D and are measured

by the receptors at the contact area. We neglect for simplicity receptor diffu-

sion, the effect of receptor internalization upon ligand binding, and cooper-

ative effects in receptor-ligand binding (5–7,9).
TABLE 1 Summary of typical biological parameters and estimated

concentration

Parameter Value

D2 0.01 to 0.1 mm2/s

kendo 0.001 to 0.01 1/s

C 1 to 100 mm�2

S 0.1 to 5 mm

tmin

�
to reach

dc

c
¼ 0:1

�
0.91 s*

tmax

�
to reach

dc

c
¼ 0:1

�
3.22 h**

t3D; typical

�
to reach

dc

c
¼ 0:1

�
0.03 s ***

All quantities were calculated using the limit of large number of receptors.

*tmin ~ 0.91 s is calculated by numerically solving the equation, ðdc=cÞ2 ¼ 1=pm

parameters: kendo ¼ 10�2 1/s, D2¼10�1 mm 2/s, c ¼ 100 1/mm 2, dc=c ¼ 0:1, s

**tmax ~ 3.22 h is calculated by solving Eq. 13 with l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2=kendo

p
, and assum

1/mm 2, dc=c ¼ 0:1, s ¼ 0.1 mm, and m ¼ 20. We note that in this limit solving

***t3D; typical ~ 0.03 s is calculated using t3Dz1=2pD3caðdc=cÞ2 (4) by assum
To take into account the presence of m multiple receptors with radius a,

we assume similarly to the case of one receptor that

d~cðt; xÞ ¼
Xm

m¼ 1

Z
d2x0dt0 wrðxm � x0Þkrðt � t0Þdc�ðt0; x0Þ;

(9)

where xm is the position of the m-receptor. Eq. 7 then becomes the

following:
hd~cðt; xÞd~cðt; xÞi ¼
X
m;n

Z
du

d2k

ð2pÞ3 e�t2u2

e�a2k2
�
1

m

�

� eik , xm
�
1

m

�
e�ik , xn

2cðD2k
2 þ kendoÞ

u2 þ ðD2k2 þ kendoÞ2
:

(10)

Equation 10 can be estimated by taking the limit uz0 (see Supporting

Material):
hd~cðt; xÞd~cðt; xÞiz
X
msn

�
1

m2

�
c

tD2p
K0

�jxm � xnj
l

�

þ c

pD2tm
ln

�
l

a

�
;

(11)

where K0 is the modified Bessel function (31).

We now assume that the m receptors are distributed uniformly along the
circumference of a contact area with radius s (Here, we take the same

assumption as (4) regarding the geometry involved). This assumption

allows us to simplify Eq. 11. In this case we obtain the following:

dc

c

�2

z
1

pD2ctm

�
ln

�
l

a

�
þ
Xm�1

i¼ 1
K0

�
2s

l
sin

�
pi

m

���
(12)

In the limiting case where l[s we can use the asymptotic expansion

for the modified Bessel function K0 (31) to obtain the accuracy of ligand
measurement by multiple receptors:

dc

c
z

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
pD2ct

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
l

ma

�
m

þ
�
m� 1

m

�
ln

�
1:1228

l

s

�
vuuut

: (13)
integration times to reach accuracy of 10% in measuring ligand

Reference

(22,23)

(24–27)

(22,28–30)

Small range corresponds to filopodia, large range corresponds

to epithelial contacts.

Calculated based on Eq. 12

Calculated based on Eq. 13

Calculated based on (4)

D2tc½lnðl�=aÞ þ
Pm�1

i¼1 K0ðð2s=l�Þsinðpi=mÞÞ�, and assuming the following

¼ 5 mm, and m ¼ 20.

ing the following parameters: kendo ¼ 10�3 1/s, D2 ¼ 10�2 mm 2/s, c ¼ 1

the exact formula (Eq. 12) gives the same result.

ing the following parameters: D3 ¼ 10 mm 2/s, c ¼ 100 nM, a ¼ 1 mm.

Biophysical Journal 107(10) 2417–2424
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Similar to the case of one receptor, l is replaced by l� when t � k�1
endo (see

Supporting Material).

In the Supporting Material we also provide the derivation of the results

(Eqs. 8 and 13) using an alternative method based on the fluctuation dissipa-

tion theorem (4). As expected, the binding-unbinding kinetics introduce an

additional term to the accuracy similar to the one described in the 3Dcase (4).
Calculation of accuracy in the limit of a perfect
absorber

In the calculation abovewehave taken the assumptionof a perfectmonitoring

disk where ligands are immediately released upon binding to the receptors. It

is useful to consider the opposite limit of a perfect absorber where the ligands

are immediately removed from the contact area, for example by cleavage and

internalization of the receptor-ligand pair.We have calculated the accuracy of

sensing for this case based on a simple argument initially discussed in (3). In

this calculation we directly integrate Eq. 2 with an additional boundary con-

dition cða; t>0Þ ¼ 0, to obtain the total current impinging on a disk with

radius a. Assuming a Poisson distribution, the accuracy of sensing would

simply be proportional to 1=
ffiffiffiffi
N

p
, where N is the total number of ligands

arriving at the receptor during the integration time. The accuracy obtained

for this case is given by the following (see Supporting Material):

dc

c
z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pD2ct

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
l

a

�s
(14)

Hence, for the case of a perfect absorber, the accuracy improves by a factor

of
ffiffiffi
2

p
, compared with the case of a perfect monitoring disk (Eq. 8).
RESULTS

Accuracy of ligand measurement for the one
receptor case

Using statistical mechanics formalism, we have first calcu-
lated the measurement accuracy of the 2D ligand concentra-
tion by a single receptor on the membrane of the receptor
cell (Fig. 1). We show in the methods that the expression
we get for the accuracy of measurement in this case is given
by the following:

dc

c
z

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
pD2ct

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
l

a

�s
(15)

For short integration times ðt � k�1
endoÞ, the diffusion lengthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip � ffiffiffiffiffiffiffiffip
scale in Eq. 15, l ¼ D2=kendo is replaced by l ¼ D2t.
This result differs from the 3D accuracy (Eq. 1) in several
important ways. First, the accuracy improves (i.e., dc=c de-
creases) in a logarithmic manner as the receptor radius
grows. Such logarithmic dependence appears in other quan-
tities related to diffusion in 2D (32). Furthermore, the accu-
racy now depends on the diffusion length scale in the
system, l (or l� ), which is the typical length scale from
which ligands can diffuse into the contact area before they
endocytose (or during the measurement integration time).
This logarithmic dependence means that the accuracy now
depends very weakly on the relevant length scales of the sys-
tem (apart from the standard dependence on the length scale
associated with the integration time

ffiffiffiffiffiffiffiffi
D2t

p
).
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Accuracy improves very little with increasing
number of receptors

One possible strategy to improve the accuracy is to add
more receptors at the contact area between cells. The num-
ber of receptors that come in contact with the ligands in a
neighboring cell depends on the concentration of receptors
on the cell membrane and on the contact area between cells.
We therefore calculated how the accuracy changes both with
the total number of receptors, m, in the contact area and with
the radius of the contact area, s.

The accuracy of ligand concentration measurement for
the case of m receptors, located on the contact surface be-
tween the cells (Fig. 1) are given by Eq. 12 (exact solution
valid for any l[a ) and Eq. 13 (approximated solution for
l>s ). Fig. 2 A and B show the dependence of the accuracy,
dc=c, on the number of receptors, different contact diame-
ters between cells, and different integration times. For rela-
tively short integration time ( t ¼ 30 s, Fig. 2 A) we use
Eq. 12 with l� instead of l, and for relatively long integra-
tion times ( t ¼ 600 s, Fig. 2 B) we use Eq. 13. For the case
of one receptor (m ¼ 1) we consistently recover the expres-
sion given by Eq. 15. As expected, increasing the number of
receptors,m, improves the accuracy (see Fig. 2 A and B) but,
surprisingly, this improvement saturates when the number of
receptors is greater than three to five receptors. The accu-
racy at saturation is simply the accuracy one would get if
the whole contact area was considered to be one large recep-
tor. Namely, for large m, Eq. 13 takes a similar form to the
one receptor result (Eq. 15) but with the receptor radius, a,
replaced by the radius of the contact area, s. Simple analysis
of Eq. 13 shows that the saturation value, msat, depends on
the ratio between two logarithms, msaty1þ ðlnðl=aÞ=
lnðl=sÞÞ, and hence depends very weakly on all the relevant
length scales in Eq. 13 (i.e., diffusion length scale, size of
the receptor, and size of the contact area). The effect of add-
ing more receptors is therefore much weaker in this 2D
geometry compared with the 3D geometry, where this satu-
ration is reached when msaty2s=a that can range from
several hundreds to several thousands receptors (4). Longer
integration times naturally improve the accuracy, but the
weak dependence on the number of receptors, remains
(Fig. 2 B). Hence, unlike the 3D case, the accuracy cannot
be significantly improved by adding more receptors.
Accuracy improves very little with increasing
contact area

It is interesting to ask whether the accuracy is affected by
the contact area between cells. For a fixed concentration
of receptors, increasing the contact area increases both m
and s. Fig. 2 C and D show the dependence of the accuracy
on contact radius for different receptor concentrations and
different integration times. For typical values of ligand con-
centrations, the accuracy saturates when the contact radius
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C FIGURE 2 Dependence of measurement accu-

racy on number of receptors, contact area, and inte-

gration time. (A–B) Dependence of measurement

accuracy of ligand concentration, dc=c, on the

number of receptors at the contact area, m, for rela-

tively short integration time (A, t ¼ 30 s) and for

relatively long integration time (B, t ¼ 600 s).

The accuracy in all cases saturates at around three

to five receptors. The accuracy is calculated using

the exact solution, Eq. 12, for A, and the approxi-

mate solution, Eq. 13, for B (because the condition

for approximation, s<l, can only be applied in B).

The following parameters are used: D2 ¼
0.03 mm2/s, c ¼ 100 molecules/mm2, Kendo ¼
3*10�3 1/s, a ¼ 1 nm, and the radius of the contact

area, s, as indicated in the figure legend. Because

in A t<kendo, we use l� ¼ ffiffiffiffiffiffiffiffi
D2t

p
instead of

l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2=kendo

p
for this case. (C–D) Dependence

of measurement accuracy of ligand concentration,

dc=c, on the radius of the contact area, s, for rela-

tively short integration time (C, t ¼ 30 s) and for

relatively long integration time (D, t ¼ 600 s).

The plot shows that the accuracy does not signifi-

cantly improve when s > 0.5 to 1.5 mm. As in

A–B, the accuracy is calculated using the exact so-

lution, Eq. 12, for A, and the approximate solution,

Eq. 13, for B. The number of receptors for each

value of s was calculated using m ¼ ps2sR, where

sR is the receptor density. In the exact calculation m was rounded to the nearest integer number. D2 ¼ 0.03 mm2/s, c ¼ 100 molecules/mm2, Kendo ¼ 3*10�3

1/s, a ¼ 1 nm, sR as indicated in the figure legend. Comparison of the exact and approximate solutions is provided in Fig. S1.
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is above a few microns, corresponding to the radius in which
the number of receptors in the contact area reaches the satu-
ration value, msat. Longer integration times (Fig. 2 D)
improve the accuracy (compared with shorter integration
time, Fig. 2 C) but show saturation at similar contact areas.
As in the previous section, we use Eq. 12 with l� instead of l
for short integration times ( t ¼ 30 s, Fig. 2C), and Eq. 13
for relatively long integration times ( t ¼ 600 s, Fig. 2 B).
We note that, the approximated solution in Eq. 13 works
nicely for longer integration times but breaks down (as ex-
pected) in the limit of large contact radii and short integra-
tion time (Fig. S1). This result suggests that there is almost
no advantage in terms of accuracy of measurement in having
large contact area between cells.

Another way to understand this weak dependence of
the accuracy on the number of receptors and the contact
area is by realizing that diffusion in 2D is known to
exhibit long-range density fluctuations (logarithmic depen-
dence) (33). These long-range correlations limit the
ability of the receptor cell to accurately determine the
average ligand concentration even when the whole contact
area can be treated as one effective receptor with large con-
tact area.
Integration times of up to several hours are
required to reach high accuracy

How long would it typically take for a receptor cell to accu-
rately determine ligand concentration in a neighboring cell?
Using Eqs. 12 and 13 (applied in different parameter re-
gimes) we can estimate the typical time it would take to
reach an accuracy of 10% ðdc=c ¼ 0:1Þ. For typical values
of parameters, we find that cells may need to integrate be-
tween around 1 second to 3 hours (see Table 1). These are
considerably longer times than the time it would take an
eukaryotic cell to accurately measure the concentration of
a ligand diffusing in 3D, which is typically in the milli-
second range (see Table 1 and (5)). It is interesting to
note, that developmental processes, in which juxtacrine
signaling systems are being used, may occur over periods
of time that are shorter than the typical integration times
calculated above. It is therefore not clear how signaling
can be accurately determined in these systems.
Averaging over several neighboring cells
modestly improve accuracy

Cells in higher organisms typically come in contact with
several neighboring cells, raising the question of how the ac-
curacy of sensing changes when a receptor cell is in contact
with multiple ligand cells. Assuming that the receptor cell
integrates over the signal from all its neighbors and that fluc-
tuations are uncorrelated between cells, it is easy to show
that the accuracy improves modestly by a factor of 1=

ffiffiffiffi
N

p
,

where N is the number of neighbors (see Supporting Mate-
rial). For cells in an epithelial cell layer, which have six
neighbors in average this would correspond to improving
the accuracy by a factor of ~ 2.5.
Biophysical Journal 107(10) 2417–2424
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Processing of receptor-ligand pair improves
accuracy by a factor of up to

ffiffiffi
2

p

Some juxtacrine signaling systems undergo processing upon
receptor-ligand binding; for example, the Notch receptor is
cleaved once bound to its ligand and its extracellular domain
trans-endocytose into the ligand expressing cell (34). Such
processing prevents the unbinding of the ligand and the pos-
sibility of measuring the same ligand more than once (6). In
the limit of very fast processing, namely, that processing
rate is much faster than the unbinding rate, one can consider
the receptor as a perfect absorber that counts and removes
all the ligands impinging on it (3,21) (we assume each pro-
cessed receptor is immediately replaced by a new one). The
accuracy of measurement by a perfect absorber in the 3D
case was previously shown to be better than the accuracy
of a perfect monitoring sphere by a numerical factor (21).
We perform a similar calculation for the accuracy of a per-
fect absorber for the 2D case, taking into account endocy-
tosis and exocytosis. We show that the accuracy improves
by a factor of

ffiffiffi
2

p
compared with the result in Eq. 8 (see

Methods and Supporting Material). Note that, receptor-
ligand processing may also reduce the accuracy if it takes
time for the processed receptor to be replaced by a new one.
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FIGURE 3 Implications of accuracy constraints on ephrin mediated axon

guidance and Notch mediated patterning. (A) An illustration of axon guid-

ance mediated by ephrin signaling. During axon development, axons

(yellow) that express Eph receptors in their growth cones, grow into the

target tissue that express a gradient of ephrin ligands (red). Eph signaling

is used for the determination of target positions for the axons. The limit

on accuracy of measurement in juxtacrine signaling imposes a constraint

on the growth rate of axons. For example, assuming that 1 min integration

time is required for reaching an accuracy enough to distinguish between

ephrin concentration in neighboring cells (say 10% difference between cells

that are 10 mm apart), imposes a limit on the growth rate of axons to 10 mm/

min. (B) A simplified illustration of Notch mediated wing vein development

in Drosophila. During wing vein formation, a gradient of Delta expression

in the future vein region (red) is used for defining the boundary between

vein (dark gray) and intervein (light gray) regions. Here, the limit on accu-

racy of measurement in juxtacrine signaling may impose a constraint on the

developmental time required for achieving sharp boundaries (see text).
DISCUSSION

From the point of view of the receptor cell, there are two
general strategies to improve accuracy of detection. One
strategy is to integrate the signal over longer times.
Although this strategy certainly improves accuracy it comes
with a price: a longer integration time means a slower
response time of the system. We show that for typical values
of parameters, integration times ranging from around one
second to 3 h are required to reach accuracy better than
10%. Many biological systems may be required to operate
on faster time scales.

The second strategy is to improve detection by adding
more receptors. This strategy seems to work well in 3D
signaling systems, where the accuracy can be improved
significantly by increasing the number of receptors. In this
case, the improvement in accuracy reaches saturation
when msaty2s=a. For chemotactic receptors in E. coli,
this threshold value may reach many hundreds of
receptors (3,4). In contrast, the behavior of the accuracy in
the 2D juxtacrine signaling system is dramatically different.
Although adding additional receptors initially improves
accuracy, it reaches saturation when msaty1þ ðlnðl=aÞ=
lnðl=sÞÞy3� 5, for typical values of parameters (Fig. 2 A
and B). Similarly, increasing the contact area between cells
(Fig. 2 C and D) or averaging over signal from multiple
neighbors does not significantly improve the accuracy.
This result has striking implications on the ability of cells
to sense signaling from their neighbors in an accurate
manner.
Biophysical Journal 107(10) 2417–2424
Reduced accuracy imposes a constraint on speed
of axon growth

What are the implications of these results on specific biolog-
ical processes that rely on juxtacrine signaling? One such
process is axon guidance, in which neurons send out axons
to their correct targets during neural development (35). This
process is mediated by juxtacrine signaling systems such as
the ephrin signaling pathway (but also other signaling sys-
tems may be involved). Ephrins from the target cells interact
with Eph receptors on the growth cone of the axon. The
axons in this process often respond to gradients of ephrins
expressed in the target tissue and stop growing when they
reach specific ligand concentration (36) (see Fig. 3 A).
Our results suggest that there may be a constraint on the
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growth rate of the axons because the growing neurons may
require long integration times to accurately determine the
ephrin concentration in the target tissue. Assuming growing
axons need to distinguish between ephrin concentrations
that are ~ 10% different (37), presented on cells 10 mm in
diameter, we estimate that the maximal growth rate of the
axons for typical parameters (assuming 1 min integration
time) should not exceed 10 mm/min. Interestingly, some
axons have been shown to reach growth rates as fast as
5 mm/min (38,39), suggesting that growth rate may indeed
be limited by the ability to accurately measure ephrin con-
centration during axon guidance.
Implications of result to Notch mediated
patterning

Another example for processes that may be affected by our
results are Notch mediated patterning processes. The Notch
signaling pathway is involved in different developmental
processes in which neighboring cells adopt different fates.
For example, during wing development in Drosophila
melanogaster, the Notch pathway is used in defining sharp
vein boundaries (40,41). In this system, a gradient of Delta
expression is converted into a sharp Notch signaling
response that translates to a sharp boundary defined by an
almost perfect 1D line of cells (Fig. 3 B). It has been shown
that such a mechanism may be very sensitive to noise in
Notch signaling (42). Although this process certainly in-
volves more complex regulatory processes, it is useful to
ask, in the context of a simple Notch readout model, what
would be the typical integration time required to achieve
such accurate patterning. Given that the concentration of
Delta may vary by an estimated 10% to 20% over one
cell diameter (estimated from (40)), we can estimate that
achieving such spatial accuracy would require up to
10 min. Although the process of wing vein formation takes
several hours, it is not clear at what stage during wing devel-
opment are cell fates determined. It has been shown that
target genes downstream of Notch signaling may exhibit
transient response lasting only a few minutes (43), which
may suggest that this process may also be limited by the
time it takes to accurately determine Delta concentration
along the gradient.

Notch is also involved in patterning processes in which
small initial differences between cells are amplified to
generate alternating salt-and-pepper differentiation patterns
in a process termed lateral inhibition (44,45). It is possible
that our finding that such signaling systems are inherently
noisy may be useful in this context. Such noise may help
generate large initial differences between cells that can
help generating patterned states more quickly (42).

The conclusions discussed above rely on several simpli-
fying assumptions including assuming that the receptors
do not diffuse, that the concentrations of receptors and
ligands are unmatched, and that the biochemical details of
the signaling pathway such as clustering of receptors are
neglected. The contribution of some of these effects has
been addressed elsewhere for the 3D case and is beyond
the scope of this study (5–7,9). Given that the source of
noise for juxtacrine signaling is the long-range density fluc-
tuations in 2D diffusion, we expect that the exact details of
the biochemistry would not dramatically improve the accu-
racy of sensing. Similarly, we do not expect that the accu-
racy would be significantly improved for the special case
where receptor and ligand concentrations are similar. Never-
theless, it would be interesting to explore the effect of
receptor-ligand binding-unbinding on the accuracy in juxta-
crine signaling as has been done in 3D systems (7–12).

Regarding the role of receptor diffusion, one way to
look at this problem is to say that receptor diffusion effec-
tively increases the diameter of the area probed by the re-
ceptor (a in Eq. 15). Because this diameter goes into the
logarithmic term, we do not expect receptor diffusion to
affect the uncertainty much. Nevertheless, it would be
interesting to explore these effects in detail in the future.
Finally, it will be interesting to consider the implications
of our results on other developmental processes such as
planar cell polarity and the immune system relying on
different signaling pathways than the ones discussed in
this study.
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Figure S1: Comparison of exact and approximate solutions for the accuracy of 
measurement. (A,B) Dependence of measurement accuracy of ligand concentration, 
𝛿𝑐
𝑐̅

, on the radius of the contact area, s, for relatively short integration time (A, 𝜏=30 
sec) and for relatively long integration time (B, 𝜏=600 sec) calculated either with Eq. 
12 (solid lines) or Eq. 13 (dashed lines). The plot shows that the approximate solution 
works well for long integration times (B) but breaks down for short integration times 
and large contact radii (A). This is since the condition 𝑠 < 𝜆, 𝜆∗ no longer holds in this 
parameter regime. For these plots the same parameters as Fig. 2C,D were used.  

  



 

Supplementary methods 

The purpose of this supplementary information is to describe in detail, the 
calculation of the accuracy of measuring ligand concentration by one receptor and 
its extension to several receptors. The supplementary information is divided into 
four sections. In the first section we calculate the accuracy of ligand concentration 
measurement by one receptor acting as a perfect instrument ('perfect monitoring 
disk' approximation), assuming fluctuations induced by the diffusion of ligands. In 
the second section we extend the calculation of accuracy of ligand concentration to 
the case of several receptors. In the third section we present a detailed computation 
of the accuracy of ligand sensing by a perfect absorbing receptor. In the fourth 
section we present an alternative computation of the accuracy in measuring ligand 
concentration based on the fluctuation dissipation theorem (FDT) (1,2) and assuming 
intrinsic noise in the receptor-ligand system.  

Accuracy of ligand concentration measurement by one receptor 

The ligand concentration on the membrane of the ligand cell is described by c(x,t). 
We assume that ligands are continuously recycled in and out of the membrane (e.g. 
through endocytosis and exocytosis with rates 𝑘𝑒𝑛𝑑𝑜 and 𝑘𝑒𝑥𝑜, respectively. The 
dynamics of receptor-ligand interactions is dictated by  

𝜕𝑐(𝒙,𝑡)
𝜕𝑡

+ ∇ ∙ 𝑗 = −𝑘𝑒𝑛𝑑𝑜𝑐(𝒙, 𝑡) + 𝑘𝑒𝑥𝑜𝑐𝑐𝑦𝑡𝑜 , (S1) 

where 𝑗 is the ligands diffusion current on the cell membrane and to first  order can 
be written as 𝑗 = −𝐷2∇𝑐.  

𝐷2 is the ligand diffusion coefficient.  External noise is included by adding a current 
𝑗𝑑 = −𝛾𝑐∇𝜇 , where 𝛾 is the ligand mobility and 𝜇 is the chemical potential. In 
thermodynamic equilibrium, the ligand concentration satisfies the Boltzman relation 
𝜇 = 𝑘𝐵𝑇𝑙𝑛𝑐 , where 𝑘𝐵 is the Boltzman constant and T represents the temperature. 

Therefore ∇ ∙ (𝛽𝐷2𝑐∇𝜇 + 𝛾𝑐∇𝜇)=0, where 𝛽 = 1
𝐾𝑇

,  leads to 𝛽𝐷2 = 𝛾 (3). 

Hence, in the presence of an external noise, Eq. S1 is replaced by 

𝜕𝑐(𝒙,𝑡)
𝜕𝑡

− 𝐷2∇2𝑐 = 𝛽𝐷2∇(𝑐∇𝜇) − 𝑘𝑒𝑛𝑑𝑜𝑐(𝒙, 𝑡) + 𝑘𝑒𝑥𝑜𝑐𝑐𝑦𝑡𝑜 . (S2) 

Next we introduce a random noise in the chemical potential 𝜇 that satisfies 

〈𝛿𝜇(𝑡,𝒌)𝛿𝜇(𝑡′,−𝒌)〉 = 𝐴(𝑘)𝛿(𝑡 − 𝑡′), (S3) 

where  𝑘 = |𝒌|.  The notation 〈… 〉 represents an ensemble average. The fluctuation 
in the chemical potential is defined by 𝛿𝜇 = 𝜇 − 𝜇̅ , where 𝜇̅  is the chemical 



potential average value, and 𝜇(𝑡,𝒌) is the spatial Fourier transform of the chemical 
potential. We define the Fourier transform in spatial and temporal variables of a 
function 𝑓(𝒙, 𝑡) according to the following standard definition  

𝑓(𝜔,𝒌)=∫𝑑𝑡 ∫𝑑2𝑥 𝑒𝑖(−𝒌∙𝒙+𝜔𝑡)𝑓(𝒙, 𝑡). (S4) 

Similarly we define the fluctuations in the ligand concentration by 𝛿𝑐∗, 𝑐 = 𝑐̅ + 𝛿𝑐∗,  
where 𝑐̅ represents the ligand average concentration. Eq. S2 may be rewritten in 
terms of the fluctuations 𝛿𝑐∗ and 𝛿𝜇 as 

𝜕𝛿𝑐∗(𝒙,𝑡)
𝜕𝑡

− 𝐷2∇2𝛿𝑐∗ = 𝛽𝐷2𝑐̅ ∇2(𝛿𝜇) − 𝑘𝑒𝑛𝑑𝑜𝛿𝑐∗(𝒙, 𝑡). (S5) 

The Fourier transform of Eq. S5 in spatial and temporal variables leads to 

𝛿𝑐∗(𝜔,𝒌) = −𝛽𝑐̅𝐷2𝑘2

−𝑖𝜔+𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜
𝛿𝜇(𝜔,𝒌). (S6) 

The next step is to compute the power spectrum of the fluctuation 𝛿𝑐∗:  𝑆𝑐(𝜔,𝒌) =
〈𝛿𝑐∗(𝑤,𝒌)𝛿𝑐∗(−𝜔,−𝒌)〉 (4). We calculate the power spectrum 𝑆𝑐(𝜔,𝒌) using Eq. S3 
and Eq. S6 obtaining 

𝑆𝑐(𝜔,𝒌)  = A𝛽2𝑐̅2 (𝐷2𝑘2)2

𝜔2+(𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜)2
 . (S7) 

In the case of a solution at low concentration (ideal gas approximation) it is known 
that  𝜇 = 𝛽−1𝑙𝑛 𝑐, then applying the equipartition theorem (5) to the variable 𝑐 and 

its conjugate 𝜇 = 𝜕𝐸
𝜕𝑐

 ,we get  〈𝛿𝑐∗(𝑡)𝛿𝜇(𝑡)〉 = 𝛽−1 = 𝛽−1𝑐̅−1〈𝛿𝑐∗(𝑡)2〉. Therefore 

(4) 

〈𝛿𝑐∗(𝑡)2〉 =𝑐̅ . (S8) 

It is well known that the power spectrum satisfies (2) 

〈𝛿𝑐∗(𝑡)2〉  = ∫ 𝑑𝜔
2𝜋
𝑆𝑐(𝜔,𝒌) . (S9) 

Substituting Eq. S7, into Eq. S9 we find 

〈𝛿𝑐∗(𝑡)2〉 = 𝐴𝛽2𝑐̅2(𝐷2𝑘2)2

2(𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜)
.(S10) 

Replacing Eq. S8 into Eq. S10 we obtain 

𝐴 = 2(𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜)
𝑐̅𝛽2 (𝐷2𝑘2)2

 , (S11) 

and hence the power spectrum 𝑆𝑐(𝜔,𝒌) becomes 

𝑆𝑐(𝜔,𝒌) = 2𝑐̅(𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜)
𝜔2+(𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜)2

 . (S12) 



This expression is a generalization of the correlation function of the fluctuations of 
the number of solute particles in a weak solution where particles are continuously 
recycled (6). Next, we consider a receptor that can measure ligand concentration in a 
radius roughly equivalent to its size, a, over an integration time 𝜏.  The average 
ligand concentration measured by a receptor will be given by  

𝑐̃(𝑡, 𝑥) = ∫𝑑2𝑥′𝑑𝑡′ 𝑤𝑟(𝒙 − 𝒙′)𝑘𝑟(𝑡 − 𝑡′) 𝑐(𝑡′,𝒙′). (S13) 

where the function 𝑤𝑟(𝒙 − 𝒙′) defines the receptor spatial distribution and 
𝑘𝑟(𝑡 − 𝑡′) describes the receptor temporal response. We take the limit of a 'perfect' 
receptor which can count all the ligands that arrive at its close vicinity. 

We choose Gaussian distributions  𝑤𝑟(𝒙 − 𝒙′) = 𝑒−(𝒙−𝒙′)2/(2𝑎2)

2𝜋𝑎2
  and 

𝑘𝑟(𝑡 − 𝑡′) =  𝑒
−(𝑡−𝑡′)2/(2𝜏2)

√2𝜋𝜏
.   

Both Gaussian distributions are normalized:  ∫𝑑2 𝑥 𝑤𝑟(𝒙 − 𝒙′) = 1 and ∫𝑑𝑡  𝑘𝑟(𝑡 −
𝑡′) = 1. As a matter of comparison, note that a slightly different kernel function 
𝑤𝑗(𝑡) was defined by Berg and Purcell (7), being equal to 1  if the ligand molecule is 
at time t inside a small sphere representing a receptor and 0 otherwise. 

Using Eq. S13, and writing 𝛿𝑐∗(𝑡′,𝒙′)  in terms of its Fourier transform, we find that  
〈𝛿𝑐̃(𝑡,𝒙)2〉 is given by 

〈𝛿𝑐̃(𝑡,𝒙)𝛿𝑐̃(𝑡,𝒙)〉=∫𝑑2𝑥′𝑑𝑡′𝑑𝜔 𝑑2𝑘
(2𝜋)3

𝑑2x''dt'' 𝑑𝜔′ 𝑑
2𝑘′

(2𝜋)3
  

𝑤𝑟�𝒙 − 𝒙′�𝑘𝑟�𝑡 − 𝑡′�𝑒𝑖�𝒌∙𝒙′−𝜔𝑡′�𝑤𝑟�𝒙 − 𝒙′′�𝑘𝑟�𝑡 − 𝑡′′�𝑒𝑖�𝒌
′∙𝒙′′−𝜔′𝑡′′�〈𝛿𝑐∗(𝜔,𝒌)𝛿𝑐∗�𝜔′,𝒌′�〉 

=∫𝑑2𝑥′𝑑𝑡′𝑑𝜔 𝑑2𝑘
(2𝜋)3

d2x''dt''

 𝑑𝜔′ 𝑑
2𝑘′

(2𝜋)3
 𝑒

−(𝑡−𝑡′)2/(2𝜏2)

√2𝜋𝜏
𝑒−(𝒙−𝒙′)𝟐/(2𝑎2)

2𝜋𝑎2
𝑒𝑖�𝒌∙𝒙′−𝜔𝑡′� 𝑒

−(𝑡−𝑡′′)2/(2𝜏2)

√2𝜋𝜏
𝑒−(𝒙−𝒙′′)2/(2𝑎2)

2𝜋𝑎2
𝑒𝑖�𝒌′∙𝒙′′−𝜔′𝑡′′� 

〈𝛿𝑐∗(𝜔,𝒌)𝛿𝑐∗(𝜔′,𝒌′)〉. (S14) 

It is easy to see that 

∫𝑑𝑡′ 𝑒
−(𝑡−𝑡′)2/(2𝜏2)

√2𝜋𝜏
𝑒−𝑖𝜔𝑡′=𝑒−𝑖𝜔𝑡𝑒−𝜏2𝜔2/2 , (S15) 

and  

∫𝑑2𝑥′ 𝑒
−(𝒙−𝒙′)2/(2𝑎2)

2𝜋𝑎2
𝑒𝑖𝒌∙𝒙′ = 𝑒𝑖𝒌∙𝒙𝑒−𝑎2𝑘2/2. (S16) 



Then taking into account that (〈𝛿𝑐∗(𝜔,𝒌)𝛿𝑐∗�𝜔′, 𝒌′�〉 = (2𝜋)3𝛿(𝜔 + 𝜔′)𝛿(𝒌 +
𝒌′)𝑆𝑐∗(𝜔,𝒌)) (4), we obtain 

〈𝛿𝑐̃2〉 = ∫ 𝑑𝜔𝑑2𝑘
(2𝜋)3

2𝑐̅(𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜)
𝜔2+(𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜)2

𝑒−𝜏2𝜔2𝑒−𝑎2𝑘2 (S17) 

where 〈𝛿𝑐̃2〉 = 〈𝛿𝑐̃(𝑡,𝒙)𝛿𝑐̃(𝑡,𝒙)〉. 

Due to the radial symmetry of the function appearing in Eq. S17 it is natural to 
introduce polar coordinates (𝑘 = |𝒌|,𝜃). After performing the integration in the 
azimuthal angle, Eq. S17 can be rewritten as 

〈𝛿𝑐̃2〉 = ∫ 𝑑𝜔 𝑒−𝜏2𝜔2∞
−∞ ∫ 𝑘𝑑𝑘

(2𝜋)2
∞
0 𝑒−𝑎2𝑘2  2𝑐̅(𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜)

𝜔2+(𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜)2
.(S18) 

In order to compute Eq. S18 we introduce the following dimensionless parameters 

𝛼 = 𝑎2

𝐷2𝜏
 ,  𝑣 = 𝑘𝑎, 𝑢 = 𝜔𝜏. 

Then 〈𝛿𝑐̃(𝑡, 𝑥)2〉 becomes 

〈𝛿𝑐̃2〉 = 𝑐̅𝛼
𝜋2𝑎2 ∫ 𝑑𝑢 𝑒−𝑢2∞

0 ∫ 𝑑𝑣 𝑒−𝑣2  𝑣�𝑣2+𝛼𝑘𝑒𝑛𝑑𝑜𝜏�
𝛼2𝑢2+(𝑣2+𝛼𝑘𝑒𝑛𝑑𝑜𝜏)2

∞
0 =

𝑐̅𝛼
𝜋2𝑎2 ∫ 𝑑𝑢 𝑒−𝑢2∞

0 ∫ 𝑑𝑣 𝑒−𝑣2  
𝑣�𝑣2+�𝑎𝜆�

2
�

𝛼2𝑢2+(𝑣2+�𝑎𝜆�
2

)2

∞
0 , (S19) 

where we define the diffusive  length scale 𝜆 = � 𝐷2
𝑘𝑒𝑛𝑑𝑜

. 

The parameter a for typical receptors is about 1-10 nm, D2 is in the range 0.01-0.1 
µm2/sec (8,9),  and kendo  varies in the range 0.001-0.01  1/sec (10-13).  

Hence we have  �𝑎
𝜆
�
2
 ~10−8 − 10−5 ≪ 1. The parameter 𝛼2 for large integration 

times is expected to be in the range [10−16, 10−10]. 

The 𝑢 –integrand, due to the term  𝑒−𝑢2,  tends to zero for 𝑢~2. Then, introducing a 
sharp cut-off   𝑢𝑚𝑎𝑥 = 𝜋, or (𝜔𝑚𝑎𝑥 = 𝜋

𝜏
), we may  approximate the integral from 0 

to ∞ of the Gaussian by an integral with a sharp cutoff and the Gaussian substituted 
by 1. Hence we proceed by evaluating the u integral, 

〈𝛿𝑐̃2〉 = 𝑐̅𝛼
𝜋2𝑎2 ∫ 𝑑𝑢𝜋

0 ∫ 𝑑𝑣 𝑒−𝑣2  
𝑣�𝑣2+�𝑎𝜆�

2
�

𝛼2𝑢2+(𝑣2+�𝑎𝜆�
2

)2

∞
0 = 𝑐̅𝛼

𝜋2𝑎2 ∫ 𝑑𝑣 𝑒−𝑣2𝑣 �𝑣2 +∞
0

�𝑎
𝜆
�
2
�
arctan ( 𝛼𝜋

𝑣2+�𝑎𝜆�
2)

𝛼(𝑣2+�𝑎𝜆�
2

)
= 𝑐̅

𝜋2𝑎2 ∫ 𝑑𝑣 𝑒−𝑣2𝑣 arctan ( 𝛼𝜋

𝑣2+�𝑎𝜆�
2)∞

0 . (S20) 



 

The 𝑣 −integrand of Eq. S20, drops to almost 0 for 𝑣~2, due to the exponential 

function 𝑒−𝑣2  and that the function 
𝑣�𝑣2+�𝑎𝜆�

2
�

𝛼2𝑢2+(𝑣2+�𝑎𝜆�
2

)2
 is bounded.  Therefore most of 

the contribution to the integral (Eq. S20) comes from values of  𝑣 < 2. We simplify 
the calculation by approximating the 𝑣-integral appearing in Eq. S20 by a new 

integral with a sharp cut-off 𝑣𝑚𝑎𝑥 = 1 (i.e. 𝑘𝑚𝑎𝑥 = 1
𝑎

)  where the function 𝑒−𝑣2  is 

replaced by 1 (2,14)  (see below, Eq. S21).  

Defining  𝛿𝑐 = �〈𝛿𝑐̃2〉, and recalling that the argument of the 𝑎𝑟𝑐𝑡𝑎𝑛 is small for 

large enough integration times (𝛼 ≪ �𝑎
𝜆
�
2
, or equivalently 𝜏 ≫ 1

𝑘𝑒𝑛𝑑𝑜
 ), we finally 

obtain 

�𝛿𝑐
𝑐̅
�
2

 = 𝛼
𝜋2𝑎2 ∫ 𝑑𝑣 𝜋𝑣

𝑣2+�𝑎𝜆�
2

1
0 = 1

𝜋𝐷2𝜏𝑐̅
ln �𝜆

𝑎
�, (S21) 

where we have assumed that  𝜆
𝑎
≫ 1. 

For the case of short integration times (𝜏 ≪ 1
𝑘𝑒𝑛𝑑𝑜

) we proceed by first evaluating the 

𝑣 −integral (here we also assumed a sharp cutoff to take care of the integrands 
containing the Gaussians) 

〈𝛿𝑐̃2〉 = 𝑐̅𝛼
𝜋2𝑎2 ∫ 𝑑𝑢𝜋

0 ∫ 𝑑𝑣  
𝑣�𝑣2+�𝑎𝜆�

2
�

𝛼2𝑢2+(𝑣2+�𝑎𝜆�
2

)2

1
0 . (S22) 

The 𝑣 integral can be evaluated analytically using the expression ∫𝑑𝑣 𝑣�𝑣2+𝑙�
𝑏2+(𝑣2+𝑎)2

=
1
4

ln [𝑏2 + (𝑣2 + 𝑙)2]. Hence Eq.S22 is equivalent to 

〈𝛿𝑐̃2〉 = 𝑐̅𝛼
𝜋2𝑎2 ∫ 𝑑𝑢 1

4
𝜋
0 ln (1 +

(2�𝑎𝜆�
2
+1)

�𝑎𝜆�
4
+𝛼2𝑢2

). (S23) 

This integral can be computed analytically using 

 ∫𝑑𝑥𝑙𝑛(1 + 𝑎
𝑏+𝑐𝑥2

) = 𝑥𝑙𝑛 � 𝑎
𝑏+𝑐𝑥2

+ 1� +
2√𝑎+𝑏 𝑡𝑎𝑛−1( √𝑐 𝑥

√𝑎+𝑏
)

√𝑐
− 2�𝑏

𝑐
𝑡𝑎𝑛−1(�𝑐

𝑏
𝑥), then 

we obtain 



〈𝛿𝑐̃2〉  =

𝑐̅𝛼
𝜋2𝑎2

1
4

⎣
⎢
⎢
⎢
⎡
ln�1 +

�2�𝑎𝜆�
2
+1�

�𝑎𝜆�
4
+𝛼2

� + 2
𝛼
��2 �𝑎

𝜆
�
2

+ 1� + �𝑎
𝜆
�
4

 𝑡𝑎𝑛−1

⎝

⎜
⎛ 𝛼

��2�𝑎𝜆�
2
+1�+�𝑎𝜆�

4

⎠

⎟
⎞
−

2𝑘𝑒𝑛𝑑𝑜𝜏
𝛼

 𝑡𝑎𝑛−1 � 𝛼
𝑘𝑒𝑛𝑑𝑜𝜏

�

⎦
⎥
⎥
⎥
⎤
 . (S24) 

Note that the expression shown in Eq.S24 is valid for any integration time 𝜏. 

In the limit �𝑎
𝜆
�
2
≪ 1, and assuming �𝑎

𝜆
�
4
≪ 𝛼2 (i.e.  𝜏 ≪ 1

𝑘𝑒𝑛𝑑𝑜
 , for short integration 

times), we find that 

〈𝛿𝑐̃2〉 = 𝑐̅𝛼
𝜋𝑎2

1
4

[ln �1 + 1
𝛼2
� + 2

𝛼
𝑡𝑎𝑛−1𝛼 − 2𝑘𝑒𝑛𝑑𝑜𝜏

𝛼
 𝑡𝑎𝑛−1( 𝛼

𝑘𝑒𝑛𝑑𝑜𝜏
)]. (S25) 

The parameter 𝛼  is expected to be in the range (10−4 − 10−1). The term  

ln � 1
𝛼2

+ 1� may be approximated by ln � 1
𝛼2
�. The difference between the terms 

2
𝛼
𝑡𝑎𝑛−1𝛼, and  2𝑘𝑒𝑛𝑑𝑜𝜏

𝛼
 𝑡𝑎𝑛−1 � 𝛼

𝑘𝑒𝑛𝑑𝑜𝜏
� , is small compared to the ln � 1

𝛼2
� term . 

Hence we get that, for short integration times,  

〈𝛿𝑐̃2〉  = 𝑐̅
𝜋𝐷2𝜏

ln(�𝐷2𝜏
𝑎2

) = 𝑐̅
𝜋𝐷2𝜏

ln �𝜆
∗

𝑎
�, where 𝜆∗ ≡ �𝐷2𝜏  is the corresponding 

natural length scale. Then the relative uncertainty for short integration times 
becomes 

 �𝛿𝑐
𝑐̅
�
2

 = 1
𝜋𝐷2𝜏𝑐̅

ln( 𝜆
∗

𝑎
). (S26) 

By plotting the function defined by Eq.S24 it is easy to verify that the limits given by 
Eqs. S21 and S26 are good approximations for the accuracy at short and large 
integration times. 

Note that in the very extreme case where 𝛼 gets so large (i.e. integration time very 
close to 0, or very small diffusion coefficient) that the dominant term in Eq. S24 is 

the second term,  2
𝛼
𝑡𝑎𝑛−1(𝛼)~ 𝜋

𝛼
, then we get 〈𝛿𝑐̃2〉  = 𝑐̅𝛼

𝜋2𝑎2
1
4
𝜋
𝛼

 and �𝛿𝑐
𝑐̅
�
2

= 1
4𝜋𝑐̅𝑎2

. 

Time average does not appear, but just the size of the receptor. In this limit the 
ligands can hardy diffuse over distances larger than the receptor size, and then it 
makes sense that there will not be any diffusion noise. Without diffusion the only 



source of noise would be Poisson counting noise 1
√𝑁 

, where 𝑁 is the number of 

ligands placed in the contact area (namely, �𝛿𝑐
𝑐̅
�
2

~ 1
𝑎2𝑐̅

 ).    

Accuracy of ligand concentration measurement by multiple receptors 

In order to take into account the presence of m multiple receptors, we assume  

𝛿𝑐̃(𝑡,𝒙) = ∑ ∫𝑑2𝑥𝑑𝑡′ 𝑤𝑟�𝒙𝝁 − 𝒙′�𝑘𝑟(𝑡 − 𝑡′) 𝛿𝑐∗(𝑡′,𝒙′),𝑚
𝜇=1  (S27) 

 where  𝑤𝑟�𝒙𝝁 − 𝒙′� = 𝑒−(𝒙𝝁−𝒙′)2/(2𝑎2)

2𝜋𝑎2𝑚
. (S28) 

Proceeding in a similar way to the case of one receptor, we compute 〈𝛿𝑐̃2〉: 

〈𝛿𝑐̃2〉=∑ ∫𝑑2𝑥′𝑑𝑡′𝑑𝜔 𝑑2𝑘
(2𝜋)3𝜇,𝜈 𝑑2𝑥′′dt''

 𝑑𝜔′ 𝑑
2𝑘′

(2𝜋)3
𝑒−(𝒙𝝁−𝒙′)2/(2𝑎2)

2𝜋𝑎2𝑚
𝑒−(𝑡−𝑡′)2/(2𝜏2)

√2𝜋𝜏
𝑒−(𝒙′′−𝒙𝝂 )

2
/(2𝑎2)

2𝜋𝑎2𝑚
𝑒−(𝑡−𝑡′′)2/(2𝜏2)

√2𝜋𝜏
𝑒𝑖�𝒌∙𝒙′−𝜔𝑡′� 

𝑒𝑖�𝒌′∙𝒙′′−𝜔′𝑡′�〈𝛿𝑐∗(𝜔,𝒌)𝛿𝑐∗�𝜔′,𝒌′�〉. (S29) 

As in the one receptor case, we set 𝜔′ = −𝜔 and 𝒌′ = −𝒌 (4), and obtain 

〈𝛿𝑐̃2〉=∑ ∫𝑑𝜔𝜇,𝜈
𝑑2𝑘

(2𝜋)3
 𝑒−𝜏2𝜔2𝑒−𝑎2𝑘2( 1

𝑚
)2𝑒𝑖𝒌∙𝒙𝝁𝑒−𝑖𝒌∙𝒙𝝂 2𝑐̅(𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜)

𝜔2+(𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜)2
. (S30) 

We first consider low frequencies (𝜔 ≈ 0) (2). Then we replace the infinite integral in 
𝜔  (Eq.S30) by an integral with sharp cutoff  𝜔𝑚𝑎𝑥~ 𝜋

𝜏
 and substitute the Gaussian 

kernel by the constant value 1 (similarly to the case of one receptor). Then Eq.S30 
can be rewritten as 

 〈𝛿𝑐̃2〉 = ∑ ∫ 𝑑𝜔∞
0𝜇,𝜈  ∫ 𝑑2𝑘

(2𝜋)3
𝑒−𝜏2𝜔2𝑒−𝑎2𝑘2𝑒𝑖𝒌∙(𝒙𝝁−𝒙𝝂)( 1

𝑚
)2 4𝑐̅(𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜)

𝜔2+(𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜)2
 (S31). 

The integral in 𝜔 is just  𝜋
𝜏
 , therefore Eq.S31 becomes 

 〈𝛿𝑐̃2〉~∑ ∫ 𝑑2𝑘
(2𝜋)3𝜇,𝜈  𝑒−𝑎2𝑘2𝑒𝑖𝒌∙(𝒙𝝁−𝒙𝝂)( 1

𝑚
)2 4𝜋𝑐̅/(𝐷2𝜏)

𝑘2+𝑘𝑒𝑛𝑑𝑜/𝐷2
 (S32). 

The dominant terms in Eq.S32 come from the terms with small 𝑘𝑎, due to the drop 
of the Gaussian kernel. Therefore, we may approximate the Gaussian by the 

constant 1 and limit the integral in 𝑘 from 0 to 1
𝑎

 . Note that the integral (in Eq. S32) 

is in addition highly oscillatory for large values of 𝑘. In particular, the Fourier integral 
is highly oscillatory in the exponent 𝒌 ∙ (𝒙𝝁 − 𝒙𝝂). The maximal value of 𝑘 

contributing to the integral is  𝑘𝑚𝑎𝑥~ 1
�𝒙𝝁−𝒙𝝂�𝑚𝑖𝑛

~1/𝑎. Therefore we may consider 



the integral again over all possible values of 𝑘, because  large values of 𝑘  do not 
contribute to the Fourier integral. Hence Eq. S32 is replaced by 

〈𝛿𝑐̃2〉  ≈ ∑ ( 1
𝑚2) 4𝜋𝑐̅

𝐷2𝜏
∫ 𝑑2𝑘

(2𝜋)3𝜇,𝜈  𝑒𝑖𝒌∙(𝒙𝝁−𝒙𝝂) 1

𝑘2+�1𝜆�
2.(S33) 

Now the integral term appearing in Eq. S33 is the 2D inverse Fourier transform of the 

generalized function  1

𝑘2+�1𝜆�
2.  This corresponds to one of the well-known radial 

inverse Fourier transform, and it can be written in terms of the modified Bessel 
function K0 (15-18). 

∫𝑑2𝑘 𝑒𝑖𝒌∙𝒓

𝑘2+ 1
𝛬2

= 2𝜋𝐾0 �
|𝒓|
𝛬
�.                                  (S34) 

Therefore, Eq. S33 can be expressed as 

〈𝛿𝑐̃2〉  ≈ ∑ � 1
𝑚2�𝜇≠𝜈

𝑐̅
𝜏𝐷2𝜋

𝐾0��𝒙𝝁 − 𝒙𝝂�/𝜆� + 𝑐̅
𝜋𝑚𝜏𝐷2

ln �𝜆
𝑎
�. (S35) 

The only limitations of Eq.S35 are  𝜆
𝑎
≫ 1 and  𝜏 ≫ 1

𝑘𝑒𝑛𝑑𝑜
 . 

For the sake of simplicity, we will assume a cluster of m receptors of size a 
distributed equidistantly along a ring of radius s (2). This assumption allows us to 
simplify Eq. S35. 

Let's define the following variables  

𝜃𝑖 = 𝑖 2𝜋
𝑚

,  𝑥1 = 0,𝑦1 = 𝑠, 𝑥𝑖 = 𝑠 𝑠𝑖𝑛𝜃𝑖 ,𝑦𝑖 = 𝑠 𝑐𝑜𝑠𝜃𝑖.         (S36) 

It is easy to see that 

|(𝑥1 − 𝑥𝑖)| = √2𝑠�1 − 𝑐𝑜𝑠𝜃𝑖 = 2𝑠 sin (𝜋𝑖
𝑚

).             (S37) 

Therefore, defining 𝛿𝑐 = �〈𝛿𝑐̃2〉 we obtain for large integration times  

�𝛿𝑐
𝑐̅
�
2
≈ �

ln(𝜆𝑎)

𝜋𝑚𝐷2𝑐̅𝜏
+

∑ 𝐾0𝑚−1
𝑖=1 (2𝑠𝜆1

sin�𝜋𝑖𝑚�)

𝜋𝑚𝐷2𝑐̅𝜏
�,             (S38) 

or 

�𝛿𝑐
𝑐̅
� ≈ 1

�𝜋𝐷2𝑐̅𝜏𝑚
�ln �𝜆

𝑎
� + ∑ 𝐾0𝑚−1

𝑖=1 �2𝑠
𝜆

sin �𝜋𝑖
𝑚
��.               (S39) 

As a limiting case we consider  𝜆 ≫ 𝑠. In this case we can use the limiting form for 
the modified Bessel function K0 for 𝑥 ≪ 1 (18): 



𝐾0(𝑥 ≪ 1) ≈ −�ln �𝑥
2
� + 𝐶�,                                (S40) 

where C=0.5772 (Euler-Mascheroni constant). 

Using the identity (18): 

sin(𝜋𝑚𝜑) = 2𝑚−1 ∏ 𝑠𝑖𝑛𝜋( 𝑖
𝑚

+ 𝜑)𝑚−1
𝑖=0 , (S41) 

it is easy to show that 

∏ 𝑠𝑖𝑛 �𝜋𝑖
𝑚
�𝑚−1

𝑖=1 = 21−𝑚𝑚, for m≥2 . (S42) 

Therefore, the sum of modified Bessel functions can be approximated as follows 

∑ 𝐾0𝑚−1
𝑖=1 �2𝑠

𝜆
sin �𝜋𝑖

𝑚
�� = −∑ 𝑙𝑛 �𝑠

𝜆
sin �𝜋𝑖

𝑚
��𝑚−1

𝑖=1 + 𝐶 = −∑ 𝑙𝑛 �𝑠𝑒
𝐶

𝜆
sin �𝜋𝑖

𝑚
��𝑚−1

𝑖=1 =-

∏ 𝑙𝑛 �𝑠𝑒
𝐶

𝜆
sin �𝜋𝑖

𝑚
�� = −𝑚−1

𝑖=1 ln [�𝑠𝑒
𝐶

𝜆
�
𝑚−1

21−𝑚𝑚] = −�(𝑚− 1) ln �𝑠𝑒
𝐶

2𝜆
� +

ln(𝑚)� = (𝑚− 1) ln � 2𝜆
𝑠𝑒𝐶
� − ln(𝑚).                                                            (S43) 

Substituting Eq. S43 into Eq. S39 we obtain the final result 

𝛿𝑐
𝑐̅
≈ 1

�𝜋𝐷2𝑐̅𝜏
�ln� 𝜆

𝑚𝑎�

𝑚
+ �𝑚−1

𝑚
� ln �1.1228 𝜆

𝑠
� .                       (S44) 

It should be mentioned that this same result was obtained by introducing internal 
noise to the receptor-ligand system and computing the accuracy using the 
fluctuation dissipation theorem (see below). 

Calculation of accuracy in the absence of endocytosis 

We start with Eq.S30 and consider the limit case 𝑘𝑒𝑛𝑑𝑜 = 0. Then  

〈�𝛿𝑐
𝑐̅
�
2
〉=∑ ∫ 𝑑𝜔∞

0𝜇,𝜈
𝑑2𝑘

(2𝜋)3
 𝑒−𝜏2𝜔2𝑒−𝑎2𝑘2( 1

𝑚
)2𝑒𝑖𝒌∙𝒙𝝁𝑒−𝑖𝒌∙𝒙𝝂 4𝐷2𝑘2

𝜔2+(𝐷2𝑘2)2
 . (S45) 

In order to perform the 𝜔-integral we assume a cutoff at 𝜔𝑚𝑎𝑥~ 𝜋
𝜏
 ,  and 

approximate the Gaussian by the constant 1  in the low frequency limit 𝜔 ≈ 0 
(similarly to the way we computed Eq.S30). Then the integral in 𝜔 is just 𝜋

𝜏
 and we 

obtain 

〈�𝛿𝑐
𝑐̅
�
2
〉=4𝜋

𝑐̅𝜏
∑ ∫ 𝑑2𝑘

(2𝜋)3𝜇,𝜈  𝑒−𝑎2𝑘2( 1
𝑚

)2𝑒𝑖𝒌∙𝒙𝝁𝑒−𝑖𝒌∙𝒙𝝂  1
𝐷2𝑘2

. (S46) 



In order to compute the integral in Eq.S46 we will follow also an approach similar to 
the one we used to compute Eq. S32. We note that the major contributions come 

from small values of  , again this is due to  the Gaussian kernel 𝑒−𝑎2𝑘2 that drops for 

𝑘 ≫ 1
𝑎

  and also because the Fourier integral is highly oscillatory in the exponent 

𝒌 ∙ (𝒙𝝁 − 𝒙𝝂). We can see that the maximal value of 𝑘 contributing to the integral is  

𝑘𝑚𝑎𝑥~ 1
�𝒙𝝁−𝒙𝝂�𝑚𝑖𝑛

~1/𝑎. Therefore the procedure is to approximate the Gaussian by 

1, and then compute Eq.S46 using Fourier transform of radial functions (15). Hence 
we obtain 

�𝛿𝑐
𝑐̅
�
2

 ≈ ∑ � 1
𝑚2�

4𝜋
𝐷2𝜏𝑐̅

∫ 𝑑2𝑘
(2𝜋)3𝜇,𝜈  𝑒𝑖𝒌∙�𝒙𝝁−𝒙𝝂� 1

𝑘2
= −∑ 1

𝜋𝑚𝐷2𝜏𝑐̅𝜇≠𝜈 �ln ��𝒙𝝁−𝒙𝝂�
𝜆∗

� + 𝐶� +

1
𝑚𝜋𝐷2𝜏𝑐̅

ln( �𝐷2𝜏
𝑎

). (S47) 

where C~0.5772, and 𝜆∗ is a typical length scale. We adopt 𝜆∗ ~�𝐷2𝜏 . The length 

scale 𝜆∗ (in the absence of endocytosis) plays the role of the length scale  𝜆 = � 𝐷2
𝑘𝑒𝑛𝑑𝑜

  

present when endocytosis is involved. An additional justification for the typical 
length scale 𝜆∗ ≡ �𝐷2𝜏  in the absence of endocytosis is shown using the FDT (see 
below section dedicated to the FDT approach). 

Hence the accuracy will be given by 

�𝛿𝑐
𝑐̅
�
2

= 1
𝑚𝜋𝐷2𝜏𝑐̅

ln( �𝐷2𝜏
𝑎

) − 1
𝜋𝑚𝐷2𝜏𝑐̅

�∑ 𝑙𝑛 � 𝑠
�𝐷2𝜏

sin �𝜋𝑖
𝑚
��𝑚−1

𝑖=1 + 𝐶�. (S48) 

The second term involving  ∑ 𝑙𝑛 � 𝑠
�𝐷2𝜏

sin �𝜋𝑖
𝑚
��𝑚−1

𝑖=1  can be simplified. Then we may 

use the result of Eq.S43 and obtain 

�𝛿𝑐
𝑐̅
�
2

= 1
𝜋𝐷2𝜏𝑐̅

[
ln��

𝐷2𝜏
𝑚𝑎 �

𝑚
 + �𝑚−1

𝑚
� ln �1.1228 �𝐷2𝜏

𝑠
�] (S49) 

For large number of receptors we may just use the approximate expression 

 �𝛿𝑐
𝑐̅
�
2

= 1
𝜋𝐷2𝜏𝑐̅

 ln �1.1228 �𝐷2𝜏
𝑠
�. (S50). 

Note that this expression has a physical meaning only for 𝜆∗ > 𝑠. 

Note that in the absent of endocytosis and assuming  𝑠
�𝐷2𝜏

≪ 1, we obtained an 

expression for the accuracy (Eq.S49) similar to the one obtained when endocytosis is 
present and 𝜆 ≫ 𝑠 (Eq.S44). We infer that for more general cases, i.e. where the 
contact radio is larger than the typical length scale 𝜆∗ ≡ �𝐷2𝜏, the accuracy for short 
integration times will be given by the expression Eq. S39 but with 𝜆 replaced by 𝜆∗. 



One way of seeing this is by noticing that for short integration times, endocytosis 
role is negligible, being  𝜆∗ the only relevant length scale affecting the accuracy. 

Improvement of accuracy by averaging over neighboring cells 

We assume that each cell is surrounded by N neighboring cells and receives a signal 
from all its neighbors. The total signal received by the cell, S(t),  is the sum of the 
individual signals from all its neighbors. Assuming that the signal from each neighbor 
is proportional to its ligand concentration we can write 

  𝑆(𝑡) = ∑ 𝑐𝑖𝑁
𝑖=1 (𝑡) (S51)  

(for simplicity we assumed that the proportionality constant is 1). The average value 
of the signal measured by all neighbor cells is given by  𝑆1� (𝑡) = ∑ 𝑐𝑖̅𝑁

𝑖=1 (𝑡).  

The accuracy of the total signal is therefore defined as 

𝛿𝑆 = 𝑆 − 𝑆̅ = ∑ (𝑐𝑖𝑁
𝑖=1 -𝑐𝑖̅)=∑ 𝛿𝑐𝑖𝑁

𝑖=1 .                                                              (S52) 

Squaring both terms we obtain 

(𝛿𝑆)2 = ∑ (𝛿𝑐𝑖)2𝑁
𝑖=1 + ∑ ∑ (𝛿𝑐𝑖)𝑗𝑖,𝑖≠𝑗 �𝛿𝑐𝑗�.                                                 (S53) 

We take ensemble average of Eq. S53.  Assuming that the measurements performed 
by each neighbor cell are statistically independent, and since 〈(𝛿𝑐𝑖)〉  = 0,  we see 
that 〈(𝛿𝑐𝑖)�𝛿𝑐𝑗�〉  =  〈(𝛿𝑐𝑖)〉 〈�𝛿𝑐𝑗�〉  = 0, and hence 
〈(𝛿𝑆)2〉  = ∑ 〈(𝛿𝑐𝑖)2〉.𝑁

𝑖=1                                                                                           (S54) 

The relative accuracy of measuring ligand concentration 〈(𝛿𝑆1)2〉 
𝑆1���

2  turns out to be 

〈(𝛿𝑆)2〉 
𝑆̅2

= ∑ 〈(𝛿𝑐𝑖)2〉𝑁
𝑖=1
(∑ 𝑐𝚤�𝑁

𝑖=1 )2
                                                                                                        (S55) 

There are several interesting limiting cases. 

First case: If ligand concentration in all neighbors is approximately the same, namely 
𝑐𝑖 ≈ 𝑐0, where 𝑐0 is the average concentration in a tissue. We then get 

(𝛿𝑆)2 
𝑆̅2

= (𝛿𝑐0)2

𝑁𝑐02
 .                                                                                                               (S56) 

We note that averaging by N neighbor cells the accuracy gets improved by a factor of 
1
√𝑁

 , as expected from averaging N independent random variables. 

Second case: The ligand concentration in one of the cells is much larger than in the 
other cells, 𝑐𝑖 ≫ 𝑐𝑗≠𝑖 . Then, defining 𝑐𝑖 = 𝑐0, 



             
(𝛿𝑆)2 
𝑆̅2

= (𝛿𝑐0)2

𝑐02
 .                                                                                                                (S57)                   

In this case the noise is dominated by the cell with the higher ligand concentration. 

Third case: There is a gradient of ligand concentration (as in the vein boundary case 
discussed in the text). Assuming a two dimensional array of hexagonal cells (N=6 
neighbors) and a linear gradient in ligand concentration we can write the 
concentration in each of the cells as: 

𝑐𝑖−1,𝑗−1 = 𝑐0(1 + 𝑎
2

);  𝑐𝑖+1,𝑗−1 = 𝑐0(1 − 𝑎
2

);   𝑐𝑖−1,𝑗 = 𝑐0(1 + 𝑎);  𝑐𝑖+1,𝑗 = 𝑐0(1 − 𝑎); 

𝑐𝑖−1,𝑗+1 = 𝑐0(1 + 𝑎
2

);  𝑐𝑖+1,𝑗+1 = 𝑐0 �1 − 𝑎
2
�.                                                     (S58) 

where  𝑐𝑖,𝑗 denotes the ligand concentration measured by the cell located at row i 
and column j.  

In this case, since ∑(𝛿𝑐𝑖,𝑗)2=6(𝛿𝑐0)2 we get the same result as with a uniform ligand 
concentration with 𝑐𝑖 = 𝑐0. 

Processing of receptor-ligand pair improves accuracy by a factor of up to √𝟐 

We consider a receptor with radius a. Every ligand molecule reaching the receptor is 
immediately absorbed, hence we may assume that the ligand concentration is zero 
at the border of the receptor r=a. We also assume that there is a constant ligand 
concentration far away. The ligand concentration satisfies the diffusion equation 
 
𝜕𝑐(𝒙,𝑡)
𝜕𝑡

= 𝐷2∇2𝑐 − 𝑘𝑒𝑛𝑑𝑜𝑐(𝑥, 𝑡) + 𝑘𝑒𝑥𝑜𝑐𝑐𝑦𝑡𝑜  (S59) 
 
with the boundary condition 𝑐(𝑟 = 𝑎) = 0, meaning the ligand molecules are 
trapped as soon as they reach the receptor. The second condition corresponds to a 
reflective boundary  𝜕𝑐

𝜕𝑟
(𝑟 = 𝑏) = 0. This means that same number of ligands is 

crossing back and forth the external boundary 𝑟 = 𝑏 (20). 
Due to the symmetry of the problem, we introduce polar coordinates. Then the 
steady state solution will satisfy the following ODE: 
𝐷2

1
𝑟
𝑑
𝑑𝑟
�𝑟 𝑑𝑐

𝑑𝑟
� − 𝑘𝑒𝑛𝑑𝑜𝑐(𝑟, 𝑡) + 𝛽 = 0 (S60), 

where 𝛽 = 𝑘𝑒𝑥𝑜𝑐𝑐𝑦𝑡𝑜 . 

In order to solve this equation, we define 𝑐 = 𝑐∗ + 𝛽
𝑘𝑒𝑛𝑑𝑜

. Therefore 𝑐∗ satisfies the 

equation  

 1
𝑟
�𝐷 𝜕𝑐∗

𝜕𝑟
+ 𝐷𝑟 𝜕

2𝑐∗

𝜕𝑟2
� − 𝑟2𝑘𝑒𝑛𝑑𝑜𝑐∗ = 0(S61).  

This corresponds to a Modified Bessel’s equation. 
The most general solution of this equation can be written in terms of the modified 
Bessel functions as 
𝑐∗(𝑟) = 𝐴𝐼0 �

𝑟
𝜆
� + 𝐵𝐾0 �

𝑟
𝜆
� (S62), 



where = � 𝐷2
𝑘𝑒𝑛𝑑𝑜

 , and 𝐼0,𝐾0 are the modified Bessel functions of order 0 (18). 

Then it is very easy to show that the solution to this boundary value problem 
(perfect absorbing receptor) is 

𝑐(𝑟) = 𝛽
𝑘𝑒𝑛𝑑𝑜

[1 −
𝐼1�

𝑏
𝜆�𝐾0�

𝑟
𝜆�+𝐾1�

𝑏
𝜆�𝐼0�

𝑟
𝜆�

𝐼1�
𝑏
𝜆�𝐾0�

𝑎
𝜆�+𝐾1�

𝑏
𝜆�𝐼0�

𝑎
𝜆�

] (S63), 

𝐼0,𝐾0 and 𝐾1 are the modified Bessel functions of order 0 and 1 (18). 
 
In order to find the flux at the receptor’s border we need to compute the current 
𝐽𝑟 = 𝐷2

𝜕𝑐
𝜕𝑟

. The number of ligand molecules impinging on the receptor per unit time 
is given by  𝐽𝑟2𝜋𝑎. Then, the rate of particles absorbed by the receptor during an 
integration time 𝜏 is given by 𝑁 = 𝐽𝑟2𝜋𝑎𝜏. 
The ligands behave independently; therefore we assume they are distributed 
according to Poisson distribution, 〈(𝛿𝑁)2〉 = 〈𝑁〉. Hence, for a perfectly absorbing 
receptor the uncertainty in measuring ligands concentration is given by (21) 

�𝛿𝑐
𝑐̅
�
2

= 〈(𝛿𝑁)2〉
〈𝑁〉2

= 1
〈𝑁〉

= 1
𝐽𝑟2𝜋𝑎𝜏

 (S64). 

Let’s compute the flux: 
 

𝐽𝑟 = 𝐷2
𝜕𝑐
𝜕𝑟

= − 𝐷2𝛽
𝑘𝑒𝑛𝑑𝑜

[
𝐼1�

𝑏
𝜆�

𝑑
𝑑𝑟𝐾0�

𝑟
𝜆�+𝐾1�

𝑏
𝜆�

𝑑
𝑑𝑟𝐼0�

𝑟
𝜆�

𝐼1�
𝑏
𝜆�𝐾0�

𝑎
𝜆�+𝐾1�

𝑏
𝜆�𝐼0�

𝑎
𝜆�

]. (S65)  

It is known that  𝑑
𝑑𝑧
𝐼0(𝑧) = 𝐼1(𝑧) and 𝑑

𝑑𝑧
𝐾0(𝑧) = −𝐾1(𝑧) 

Therefore the current of ligands at 𝑟 = 𝑎 is 

𝐽𝑟 = − 𝐷2𝛽
𝑘𝑒𝑛𝑑𝑜

[
−𝐼1�

𝑏
𝜆�𝐾1�

𝑎
𝜆�+𝐾1�

𝑏
𝜆�𝐼1�

𝑎
𝜆�

𝐼1�
𝑏
𝜆�𝐾0�

𝑎
𝜆�+𝐾1�

𝑏
𝜆�𝐼0�

𝑎
𝜆�

 (S66). 

 
For the case  𝑎

𝜆
≪ 1, we may exploit the asymptotic expansions corresponding to the 

modified Bessel functions for small arguments (18): 
𝐾0 �

𝑎
𝜆
�~ − 𝑙𝑛 �𝑎

𝜆
� (S67), 

𝑑
𝑑𝑟
𝐼0 �

𝑟
𝜆
� (𝑟 = 𝑎)~0 (S68). 

Therefore, 

𝐽𝑟 = − 𝐷2𝛽
𝑘𝑒𝑛𝑑𝑜

𝐼1�
𝑏
𝜆�(1𝑎)

𝐼1�
𝑏
𝜆�(ln�𝑎𝜆�)

= − 𝐷2𝛽
𝑘𝑒𝑛𝑑𝑜

1

𝑎 ln�𝑎𝜆�
= 𝐷2𝛽

𝑘𝑒𝑛𝑑𝑜

1

𝑎 ln�𝜆𝑎�
 (S69). 

Hence 
 
𝑁 = 𝐷2𝛽

𝑘𝑒𝑛𝑑𝑜

2𝜋𝑎𝜏

𝑎 ln�𝜆𝑎�
= 𝐷2𝛽

𝑘𝑒𝑛𝑑𝑜

2𝜋𝜏

ln�𝜆𝑎�
 (S70). 

 
The uncertainty is given by 
 

�𝛿𝑐
𝑐̅
�
2

= 1
〈𝑁〉

= 𝑘𝑒𝑛𝑑𝑜
2𝜋𝜏𝐷2𝛽

ln �𝜆
𝑎
� (S71). 

 
Since at steady state far away from the absorber 𝑐̅ = 𝛽

𝑘𝑒𝑛𝑑𝑜
, we finally get: 



�𝛿𝑐
𝑐̅
�
2

= 1
〈𝑁〉

= 1
2𝜋𝜏𝐷2𝑐̅

ln �𝜆
𝑎
� (S72), 

which is a factor of 2 smaller than our result with 'perfect monitoring disk' 
approximation (Eq. S21). 

Accuracy of ligand concentration measurement by one receptor using the FDT 

We conclude the supplementary methods with an alternative computation of the 
accuracy in measuring ligand concentration. We analyze the effects of intrinsic 
fluctuations of the receptor-ligand system with the help of the fluctuation dissipation 
theorem (1,2). First we calculate the accuracy in ligand concentration measurement 
due to binding to a single fixed receptor. Afterwards we extend the calculation to 
include the possibility of binding to several fixed receptors. We arrived to the same 
accuracy due to diffusion noise we obtained when we considered a perfect receptor 
with extrinsic noise in the receptor-ligand system. 

We define n(t) as the occupation probability of one receptor bound to a ligand at 
position 𝑥0  on the membrane of the receptor cell. The ligand concentration on the 
membrane of the ligand cell is described by 𝑐(𝒙, 𝑡). We also assume that ligands are 
continuously recycled in and out of the membrane (e.g. through endocytosis and 
exocytosis with rates 𝑘𝑒𝑛𝑑𝑜 and 𝑘𝑒𝑥𝑜, respectively. The dynamics of ligand-receptor 
is governed by 

𝑑𝑛(𝑡)
𝑑𝑡

= 𝑘+𝑐(𝒙, 𝑡)�1 − 𝑛(𝑡)� − 𝑘−𝑛(𝑡),                                   (S73) 

𝜕𝑐(𝒙,𝑡)
𝜕𝑡

= 𝐷2∇2𝑐(𝒙, 𝑡) − 𝛿(𝒙 − 𝒙𝟎) 𝑑𝑛(𝑡)
𝑑𝑡

− 𝑘𝑒𝑛𝑑𝑜𝑐(𝒙, 𝑡) + 𝑘𝑒𝑥𝑜𝑐𝑐𝑦𝑡𝑜 .           (S74) 

where 𝐷2 is the 2D diffusion coefficient for the ligands on the cell membrane, 𝑘+ and 
𝑘−are the binding and unbinding rates of the ligand-receptor complex, 𝛿(𝒙) is the 
Dirac delta function, and 𝑐𝑐𝑦𝑡𝑜 is the concentration of a cytoplasmic pool of the Delta 
ligand (assumed to be constant in this study). 

The rate constants obey the detailed balance equation: 

𝑘+𝑐̅
𝑘−

= exp ( 𝐹
𝑘𝑇

),                                                  (S75) 

where 𝐹 is the difference in the free energies between unbound and bound states of 
the receptor. We introduce small perturbations around the stationary solutions. The 
perturbations are defined according to the following  

𝑘± = 𝑘±���� + 𝛿𝑘±, 𝑛 = 𝑛� + 𝛿𝑛, 𝑐 = 𝑐̅ + 𝛿𝑐, 𝐹 = 𝐹� + 𝛿𝐹.                           (S76) 

The bar over the variables denotes steady state equilibrium values. 

Substituting Eq. S76 into Eq. S75 leads to  



𝛿𝑘+
𝑘+

− 𝛿𝑘−
𝑘−

= 𝛿𝐹
𝑘𝐵𝑇

 .                                                                      (S77) 

By substituting Eq. S77 into Eq. S73 we obtain that the perturbation 𝛿𝑛 satisfies  

𝑑𝛿𝑛(𝑡)
𝑑𝑡

= −�𝑘�+𝑐̅ + 𝑘�−�𝛿𝑛(𝑡) + 𝑐̅(1 − 𝑛�)𝛿𝑘+ + 𝑘�+𝛿𝑐(1 − 𝑛�) −  𝑛�𝛿𝑘− .       (S78) 

The perturbations of the rate constants 𝛿𝑘± are connected by the Eq. S77, hence Eq. 
S78 becomes 

𝑘𝑇
𝑘�+𝑐̅(1−𝑛�)

𝑑𝛿𝑛
𝑑𝑡

+ 𝑘𝑇(𝑘�+𝑐̅+𝑘�−)
𝑘�+𝑐̅(1−𝑛�)  𝛿𝑛(𝑡) − 𝑘𝑇 𝛿𝑐

𝑐̅
=  𝛿𝐹 .                 (S79) 

In a similar way, Eq. S74 may be rewritten in terms of the perturbations 𝛿𝑐  and 𝛿𝑛  
as follows 

𝜕𝛿𝑐(𝒙,𝑡)
𝜕𝑡

= 𝐷2∇2𝛿𝑐(𝒙, 𝑡) − 𝛿(𝒙 − 𝒙𝟎) 𝑑𝛿𝑛(𝑡)
𝑑𝑡

− 𝑘𝑒𝑛𝑑𝑜𝛿𝑐(𝒙, 𝑡).               (S80) 

 

Fourier transform in spatial and temporal variables are defined as in Eq. S4. 

The Fourier transform of Eq. S79 in the temporal variable is 

𝛿𝑛(𝜔) �− 𝑘𝑇(𝑖𝜔)
𝑘�+𝑐̅(1−𝑛�) + 𝑘𝑇(𝑘�+𝑐̅+𝑘�−)

𝑘�+𝑐̅(1−𝑛�) � −
𝑘𝑇
𝑐̅
𝛿𝑐 = 𝛿𝐹 .                      (S81) 

The Fourier transform in spatial and temporal variables of Eq. S80 becomes: 

𝛿𝑐(𝒌,𝜔) = 𝑖𝜔 𝑒−𝑖𝑘∙𝑥0𝛿𝑛(𝜔)
[−𝑖𝜔+ 𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜] .                                    (S82) 

The inverse Fourier transform in 2D is defined by 

𝛿𝑐(𝒙,𝜔) = 1
(2𝜋)2 ∫ 𝑑

2𝑘 𝑒𝑖𝒌∙𝒙𝛿𝑐(𝒌,𝜔).                                          (S83) 

Applying the inverse Fourier transform to Eq. S82 we obtain: 

𝛿𝑐(𝒙𝟎,𝜔) = 𝑖𝜔
(2𝜋)2 ∫ 𝑑

2𝑘 𝛿𝑛(𝜔)
[−𝑖𝜔+ 𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜].                            (S84) 

Substituting Eq. S84 into the Eq. S81 we get: 

𝛿𝑛(𝜔) �− 𝑘𝑇(𝑖𝜔)
𝑘�+𝑐̅(1−𝑛�) + 𝑘𝑇(𝑘�+𝑐̅+𝑘�−)

𝑘�+𝑐̅(1−𝑛�) − 𝑘𝑇
𝑐̅

𝑖𝜔
(2𝜋)2 ∫ 𝑑

2𝑘 1
[−𝑖𝜔+ 𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜]� = 𝛿𝐹. (S85) 

We define the linear response function or the generalized susceptibility 𝛼 by (2) 

α = 𝛿𝑛(𝜔)
𝛿𝐹(𝜔).                                                      (S86) 

The generalized susceptibility in our particular case turns out to be 



α = 𝑘�+𝑐̅(1−𝑛�)
𝑘𝑇

1

−𝑖𝜔�1+𝑘�+(1−𝑛�)∫  𝑑
2𝑘

(2𝜋)2 1
�−𝑖𝜔+ 𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜�

�+(𝑘�+𝑐̅+𝑘�−)
.             (S87) 

Defining 

∑(𝜔) = 𝑘�+(1 − 𝑛�)∫  𝑑2𝑘
(2𝜋)2  1

[−𝑖𝜔+ 𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜] ,             (S88) 

we rewrite Eq. S87 as 

α = 𝑘�+𝑐̅(1−𝑛�)
𝑘𝑇

1
−𝑖𝜔[1+∑(𝜔)]+(𝑘�+𝑐̅+𝑘�−) .                           (S89) 

Since we are averaging over a time 𝜏 large compared to the noise correlation time 

𝜏𝑐 = �𝑘�+𝑐̅ + 𝑘�−�
−1

,  we need to take into consideration only the low frequency limit 
of the noise spectrum. 

Eq. S88 diverges for large k. In order to regularize Eq. S88, we introduce a cut off for 
large 𝑘. This is equivalent to assume that the receptor has a finite size (2). 
Introducing polar coordinates 𝑑2𝑘 = 𝑘𝑑𝜃𝑑𝑘, Eq. S88 can be rewritten as: 

∑(𝜔~0) = 𝑘�+(1− 𝑛�)∫  𝑑2𝑘
(2𝜋)2  1

𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜
=

𝑘�+(1−𝑛�)2𝜋
2(2𝜋)2𝐷2

[ln(𝐷2𝑘2 + 𝑘𝑒𝑛𝑑𝑜)]0
1
𝑎 = 𝑘

�+(1−𝑛�)
2𝜋𝐷2

ln ( 𝐷2
𝑎2𝑘𝑒𝑛𝑑𝑜

+ 1)1/2≈ 𝑘
�+(1−𝑛�)
2𝜋𝐷2

ln �𝜆
𝑎
�, (S90) 

with 

𝜆 ≡ � 𝐷2
𝑘𝑒𝑛𝑑𝑜

 ,                                                 (S91) 

as previously defined. For the derivation of Eq. S90 it was assumed 𝜆 ≫ 𝑎, where 𝑎  
is the radius of the receptor. 

The power spectrum or spectral density of a random variable 𝑦(𝑡) is defined as 

𝑆𝑦(𝜔) = lim𝑇→∞
2
𝑇
�∫ [𝑦(𝑡) − 𝑦�]𝑒𝑖𝜔𝑡𝑇/2
−𝑇/2 �

2
,                      (S92) 

and it satisfies 

∫ 𝑑𝜔
2𝜋
𝑆𝑦(𝜔) = lim𝑇→∞

1
𝑇 ∫  [𝑦(𝑡) − 𝑦�]2𝑇/2

−𝑇/2 = 〈(𝛿𝑦)2〉.                 (S93) 

In particular, the power spectrum 𝑆𝑛(𝜔) in occupancy may be defined by  

〈𝛿𝑛(𝜔)𝛿𝑛(𝜔′)〉 = 2𝜋𝛿(𝜔 + 𝜔′)𝑆𝑛(𝜔).                        (S94) 



The Fluctuation Dissipation theorem connects the generalized susceptibility 𝛼(𝜔) 

with the power spectrum 𝑆𝑛(𝜔) (2) by the relation 𝑆𝑛(𝜔) = 2𝑘𝑇
𝜔

 𝐼𝑚 (α(𝜔)). Here we 

compute 𝑆𝑛(𝜔) and obtain 

𝑆𝑛(𝜔) = 2𝑘�+𝑐̅(1−𝑛�)[1+∑(0)]

𝜔2[1+∑(0)]2+�(𝑘�+𝑐̅+𝑘�−)�2
 .            (S95) 

Using Eq. S90, the power spectrum 𝑆𝑛(𝜔) in occupancy can be rewritten as 

𝑆𝑛(𝜔~0) = 2𝑘�+𝑐̅(1−𝑛�)[1+∑(0)]
(𝑘�+𝑐̅+𝑘�−)2 = 2𝑛�(1−𝑛�)

(𝑘�+𝑐̅+𝑘�−) + 𝑛�2(1−𝑛�)2

𝜋𝐷2𝑐̅
ln �𝜆

𝑎
�.           (S96) 

Averaging over a time 𝜏, the accuracy 𝛿𝑛 will take into account only low frequencies 

|𝜔| < 1
𝜏𝑖𝑛𝑡

 : 

〈(𝛿𝑛)2〉~∫   𝑑𝜔
2𝜋
𝑆𝑛(𝜔)|𝜔|<1𝜏

0 ~∫   𝑑𝜔
2𝜋
𝑆𝑛(𝜔~0) = 𝑆𝑛(𝜔~0) 𝜔

2𝜋
|𝜔|<1𝜏
0 = 𝑆𝑛(𝜔~0)

𝜏
. (S97) 

Therefore, 

𝛿𝑛 = �𝑆𝑛(0)/𝜏 .                                              (S98) 

Finally using Eq. S96 we obtain that 

𝛿𝑛 > 𝑛�(1−𝑛�)
�𝜋𝐷2𝑐̅𝜏

�ln �𝜆
𝑎
�.                                            (S99) 

We may relate 𝛿𝑐 with 𝛿𝑛 using spectral densities of fluctuations. The power 
spectrum 𝑆𝑐(𝜔) satisfies, 

〈𝛿𝑐(𝑡)𝛿𝑐(𝑡′)〉  = ∫ 𝑑𝜔
2𝜋
𝑆𝑐(𝜔) 𝑒−𝑖𝜔(𝑡−𝑡′).                   (S100) 

A total variation in the concentration c is equivalent to a variation in the chemical 

potential µ. Since  ∆𝑐
𝑐̅

= ∆𝐹
𝑘𝐵𝑇

 , we will have 

𝑆𝑐(𝜔) = � 𝑐̅
𝑘𝐵𝑇

�
2
𝑆𝐹(𝜔).                               (S101) 

The spectral density for F satisfies  

𝑆𝑛(𝜔) = 𝛼2𝑆𝐹(𝜔);                                (S102)  

therefore 

𝑆𝐹(𝜔) = 2𝑘𝐵𝑇

𝜔�𝛿𝑛�𝛿𝐹��
2 𝐼𝑚 �𝛿𝑛�

𝛿𝐹�
�,                              (S103) 

which is equivalent to 



𝑆𝐹(𝜔) = −2𝑘𝐵𝑇
𝜔

𝐼𝑚[𝛿𝐹
�

𝛿𝑛�
] .                            (S104) 

Similarly to 𝛿𝑛, the accuracy 𝛿𝑐 satisfies: 

𝛿𝑐 = �𝑆𝑐(𝜔~0)/𝜏.                                             (S105) 

Combining Eq. S105, Eq. S104, Eq. S101 and Eq. S99 we obtain 

 
𝛿𝑐
𝑐̅

> 1
�𝜋𝐷2𝑐𝜏̅

�ln �𝜆
𝑎
� .                                         (S106) 

 

 

Length scale in the absence of endocytosis 

Now we proceed to show that endocytosis is not required in order to deal with the 
IR divergence in the zero frequency limit. If we neglect endocytosis, the diffusion 
length scale is replaced by �𝐷2𝜏 . In order to prove that, we rewrite Eq. S88 as 

�(𝜔) =𝑘�+(1 − 𝑛�)�  
𝑑2𝑘

(2𝜋)2  
1

[−𝑖𝜔 +  𝐷2𝑘2] =
𝑘�+(1 − 𝑛�)
2𝜋(2𝐷2)

[ln(𝐷2𝑘2 − 𝑖𝜔)]0
1
𝑎 = 

𝑘�+(1−𝑛�)
2𝜋(2𝐷2) �ln �

𝐷2
𝑎2
−  𝑖𝜔� − ln(−𝑖𝜔)�.                      (S107)                                          

The log of a complex number 𝑧 = 𝑟𝑒𝑖𝜃 is defined by 

                  ln(𝑧) = ln(𝑟) + 𝑖𝜃.            (S108) 

Therefore 

∑(𝜔) = 𝑘�+(1−𝑛�)
2𝜋(2𝐷2) [1

2
ln (�𝐷2

𝑎2
)2 + 𝜔2� + 𝑖𝜃1 − ln(𝜔) − 𝑖𝜃2]=∑𝑟𝑒𝑎𝑙 + 𝑖∑𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 , 

(S109) 

𝜃1 is the argument of the complex number  𝐷2
𝑎2
−  𝑖𝜔  and 𝜃2 = 3𝜋

2
. 

The generalized susceptibility is given by 

α = 𝑘�+𝑐̅(1−𝑛�)
𝑘𝑇

1
−𝑖𝜔[1+∑(𝜔)]+(𝑘�+𝑐̅+𝑘�−) .                            (S110)    

The power spectrum 𝑆𝑛(𝜔) is 

𝑆𝑛(𝜔) = 2𝑘𝑇
𝜔

 𝐼𝑚 (α(𝜔)) = 2𝑘�+𝑐̅(1−𝑛�)�1+∑(𝜔)𝑟𝑒𝑎𝑙�

𝜔2�1+∑(𝜔)𝑟𝑒𝑎𝑙�
2
+�(𝑘�+𝑐̅+𝑘�−)+𝜔∑𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦�

2 .        (S111) 



                       
The IR divergence is contained solely in the term ln(𝜔) in the zero frequency limit. 
The other terms containing 𝜔 are well behaved for small 𝜔 and can be set to 0 in the 

evaluation of 〈(𝛿𝑛)2〉~∫   𝑑𝜔
2𝜋
𝑆𝑛(𝜔)|𝜔|<1𝜏

0  . The imaginary part 𝜔∑𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 

disappears in the zero frequency limit. 

We set  𝜔~0 in all the terms that do not have IR divergence (i.e. except in the term 
involving ln(𝜔)).  

Averaging over a time 𝜏, for frequencies satisfying |𝜔| < 1
𝜏𝑖𝑛𝑡

  we obtain 

〈(𝛿𝑛)2〉~∫   𝑑𝜔
2𝜋
𝑆𝑛(𝜔)|𝜔|<1𝜏

0 ~ 2𝑘�+𝑐̅(1−𝑛�)
(𝑘�+𝑐̅+𝑘�−)2 ∫  𝑑𝜔

2𝜋
 𝑘
�+(1−𝑛�)
2𝜋(2𝐷2) [(1 + ln |𝜔|<1𝜏

0 (𝐷2
𝑎2

)2- ln �1
𝜏
�] 

=2𝑘
�+𝑐̅(1−𝑛�)

(𝑘�+𝑐̅+𝑘�−)2
𝑘�+(1−𝑛�)
2𝜋(2𝐷2)  {[1 +

2ln �𝐷2
𝑎2
�+ ln(𝜏)] �1

𝜏
� =  2𝑘

�+𝑐̅(1−𝑛�)
(𝑘�+𝑐̅+𝑘�−)2

𝑘�+(1−𝑛�)
2𝜋(2𝐷2)  2

𝜏
[ln �𝐷2𝜏

𝑎2
�]= (𝑛�(1−𝑛�))2

𝜋𝐷2𝑐̅𝜏
ln ��𝐷2𝜏

𝑎
�.             

(S112) 

Here, we note we may define a new length scale 

𝜆 = �𝐷2𝜏 .                                              (S113)                                                                                  

From here following the same computation we did for 𝑘𝑒𝑛𝑑𝑜 (see Eqs. S100-S106) we 

may obtain a similar expression to Eq. S26:  𝛿𝑐
𝑐̅

> 1
�𝜋𝐷2𝑐̅𝜏

�ln � 𝜆∗

𝑎
�   with the length 

scale 𝜆∗ = �𝐷2𝜏.  

Accuracy of ligand concentration measurement by multiple receptors using the FDT 

The extended equations for ligand and multiple molecule receptors become  

𝑑𝑛𝜇(𝑡)
𝑑𝑡

= 𝑘+𝑐�𝒙𝝁, t� �1 − 𝑛𝜇(𝑡)� − 𝑘−𝑛𝜇(𝑡),                        (S114) 

𝜕𝑐(𝒙,𝑡)
𝜕𝑡

= 𝐷2∇2𝑐(𝒙, 𝑡) − ∑ 𝛿�𝒙 − 𝒙𝝁�𝑚
𝜇=1

𝑑𝑛𝜇(𝑡)
𝑑𝑡

− 𝑘𝑒𝑛𝑑𝑜𝑐(𝒙, 𝑡) + 𝑘𝑒𝑥𝑜𝑐𝑐𝑦𝑡𝑜.      (S115) 

 

As in the case of a single receptor, detailed balance requires Eq. S75. 

Similarly to the case of one receptor, we introduce small perturbations around the 
stationary solutions: 

𝑘± = 𝑘±���� + 𝛿𝑘±, 𝑛𝜇 = 𝑛𝜇��� + 𝛿𝑛𝜇 , 𝑐 = 𝑐̅ + 𝛿𝑐, 𝐹 = 𝐹� + 𝛿𝐹.        (S116) 

The rate constants 𝛿𝑘± obey Eq. S77. 



Substituting Eq. S116 into Eq. S114 we obtain  

𝑑𝛿𝑛𝜇
𝑑𝑡

= −�𝑘�+𝑐̅ + 𝑘�−�𝛿𝑛𝜇(𝑡) + 𝑐̅�1 − 𝑛𝜇����𝛿𝑘+ − 𝑛𝜇���𝛿𝑘− + 𝑘�+𝛿𝑐�1 − 𝑛𝜇����.     (S117) 

With the help of Eq. S77 we rewrite Eq. S117 as 

𝑘𝑇
𝑘�+𝑐̅�1−𝑛𝜇�����

𝑑𝛿𝑛𝜇
𝑑𝑡

+ 𝑘𝑇(𝑘�+𝑐̅+𝑘�−)
𝑘�+𝑐̅�1−𝑛𝜇�����

 𝛿𝑛𝜇(𝑡) − 𝑘𝐵𝑇
𝛿𝑐
𝑐̅

=  𝛿𝐹.             (S118) 

We proceed to rewrite the ligand equation for the perturbation 𝛿𝑐 in terms of the 
corresponding Fourier transforms of 𝛿𝑐  and 𝛿𝑛𝜇  (similar to the computation that 
lead to Eq. S82) 

−𝑖𝜔δ𝑐(𝒌,𝜔) =
(−𝐷2𝑘2 − 𝑘𝑒𝑛𝑑𝑜)δ𝑐(𝒌,𝜔) + ∬𝑑2𝑥 𝑑t∑ 𝛿�𝒙 − 𝒙𝝁�𝑚

𝜇=1 (𝑖𝜔)𝛿𝑛𝜇(t)𝑒𝑖(−𝒌∙𝒙+𝑤t).  

 (S119) 

Therefore, 

δ𝑐 (𝒙,𝜔) =  1
(2𝜋)2

(𝑖𝜔)∑ ∫
𝑑2𝑘 𝛿𝑛𝜇(𝜔)

[−𝑖𝜔+𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜] 𝑒
𝑖𝑘(−𝒙𝝁+𝒙𝝂).  𝑚

𝜇=1          (S120) 

The integral appearing in Eq. S120 can be split into two cases (similar to the 
treatment of the 3D case by (2), namely  μ=ν and μ≠ν. 

The term corresponding to μ=ν is equal to  

δ𝑐 (𝒙𝝂,𝜔) = 𝛿𝑛𝜈(𝜔)(𝑖𝜔)∫ 1
(2𝜋)2

𝑑2𝑘
[−𝑖𝜔+𝐷2𝑘2+𝑘𝑒𝑛𝑑𝑜] ,                             (S121) 

which can be evaluated explicitly (the same integral was evaluated in Eq. S100) 

δ𝑐 (𝒙𝝂,𝜔) = 𝛿𝑛𝜈(𝜔)(𝑖𝜔)
ln �( 𝐷2

𝑎2𝑘𝑒𝑛𝑑𝑜
+1)

2𝜋𝐷2
 .                              (S122) 

The term corresponding to μ≠ν: 

δ𝑐 (𝒙𝝂,𝜔~0, µ ≠ ν) =  1
(2𝜋)2𝐷2

(𝑖𝜔)∑ ∫
𝑑2𝑘 𝛿𝑛𝜇(𝜔)

�−𝑖𝜔
𝐷2
+𝑘2+

𝑘𝑒𝑛𝑑𝑜
𝐷2

�
𝑒𝑖𝒌∙(−𝒙𝜇+𝒙𝝂)𝑚

(µ≠ν)=1 .    (S123) 

The integral term appearing in Eq. S116 (for 𝜔~0) is the 2D inverse Fourier 

transform of the generalized function  1

�𝑘2+
𝑘𝑒𝑛𝑑𝑜
𝐷2

�
. This was computed already 

(Eqs.S30-S34). 

Therefore, Eq. S116 can be rewritten as 



δ𝑐 (𝒙𝝂,𝜔~0, µ ≠ ν) =  1
(2𝜋)2𝐷2

(𝑖𝜔)∑ 𝛿𝑛𝜇(𝜔)(2𝜋)𝐾0 ��
𝑘𝑑
𝐷2
�𝒙𝝁 − 𝒙𝝂��𝑚

(µ≠ν)=1 . (S124) 

This can be expressed in terms of the diffusion length 𝜆 (Eq. S84) 

δ𝑐 (𝒙𝝂,𝜔~0, µ ≠ ν) =  1
(2𝜋)2𝐷2

(𝑖𝜔)∑ 𝛿𝑛𝜇(𝜔)(2𝜋)𝐾0 �
�(𝒙𝜇−𝒙𝝂�

𝜆
� .𝑚

(µ≠ν)=1      (S125) 

Now, the Fourier transform of Eq. S118 is 

-𝑖𝜔𝛿𝑛𝜇 = 𝑘+𝑐𝜇� �1 − 𝑛𝜇����
𝛿𝐹(𝜔)
𝑘𝑇

 + 𝑘+�1 − 𝑛𝜇����𝛿𝑐�𝑥𝜇 ,𝜔� − �𝑘+����𝑐𝜇� +   𝑘−������𝛿𝑛𝜇.     (S126) 

Substituting Eq. S122 and Eq. S123 into Eq. S126 and summing over all receptors, we 
obtain 

−𝑖𝜔𝛿𝑁(𝜔) = −

⎣
⎢
⎢
⎢
⎡
(𝑘+𝑐̅ + 𝑘−) −  (𝑖𝜔)𝑘+(1− 𝑛�)

ln�� 𝐷2
𝑎2𝑘𝑒𝑛𝑑𝑜

+1�

2𝜋𝐷2

⎦
⎥
⎥
⎥
⎤
𝛿𝑁 + 𝑘+(1 −

𝑛�) (𝑖𝜔)
(2𝜋)2𝐷2

∑ ∑ 𝛿𝑛𝜇(𝜔)𝜇≠𝜈
𝑚
𝜈=1  𝐾0(�(𝒙𝜇 − 𝒙𝝂)�/𝜆)(2𝜋)+ 𝑚𝑘+(1 − 𝑛�)𝑐̅ 𝛿𝐹(𝜔)

𝑘𝑇
 . (S127) 

Then, 

−𝑖𝜔𝛿𝑁(𝜔) =

−��𝑘+���� 𝑐̅ + 𝑘−����� −  (𝑖𝜔)𝑘+����(1− 𝑛�)
ln�𝜆𝑎�

2𝜋𝐷2
� 𝛿𝑁 +

𝑘+����(1 − 𝑛�) (𝑖𝜔)
2𝜋𝐷2

∑ ∑ 𝛿𝑛𝜇(𝜔)𝜇≠𝜈
𝑚
𝜈=1  𝐾0(�(𝒙𝜇 − 𝒙𝝂)�/𝜆)+ 𝑚𝑘+����(1 − 𝑛�)𝑐̅ 𝛿𝐹(𝜔)

𝑘𝑇
. (S128) 

Here we added over all receptors and defined the total occupancy of the receptor 
cluster as 𝛿𝑁(𝜔) = ∑ 𝛿𝑛𝜇𝑚

𝜇=1 . 

In cases where the inner sum is independent of 𝑥𝜈 (like in the symmetries 
contemplated in (2)) we rewrite the sum as 

∑ ∑ 𝛿𝑛𝜇(𝜔)𝜇≠𝜈
𝑚
𝜈=1  𝐾0 �

�(𝒙𝜇−𝒙𝝂�
𝜆

� =  𝛿𝑁(𝜔)∑ 𝐾0 �
�(𝑥𝜇−𝑥1�

𝜆
�𝜇=2 .      (S129) 

For the sake of simplicity, we will assume a cluster of m receptors of size a 
distributed equidistantly along a ring of radius s (Eqs. S36-S37). This assumption 
allows us to simplify Eq. S129. 

Then following a similar procedure to the one used to calculate the accuracy of 
ligand concentration measurement by one receptor, we obtain 

𝑆𝐹(𝜔~0) = −2𝑘𝐵𝑇[−
ln�𝜆𝑎�

2𝜋𝑐̅𝑚𝐷2
− 1

𝑘+����(1−𝑛�)𝑚𝑐̅
−

∑ 𝐾0𝑚−1
𝑖=1 �2𝑠𝜆 sin�

𝜋𝑖
𝑚��

2𝜋𝑐̅𝑚𝐷2
].             (S130) 



So, using Eq. S111 and Eq. S129 we obtain 

𝑆𝑐(𝜔~0) = 2𝑐̅ �
ln(𝜆𝑎)

2𝜋𝑚𝐷2
+ 1

𝑘+(1−𝑛�)𝑚
+

∑ 𝐾0𝑚−1
𝑖=1 (2𝑠𝜆 sin�

𝜋𝑖
𝑚�)

2𝜋𝑚𝐷2
� .             (S131) 

And therefore 

�𝛿𝑐
𝑐̅
�
2

= �
ln(𝜆𝑎)

𝜋𝑚𝐷2𝑐̅𝜏
+ 2

𝑘+(1−𝑛�)𝜏𝑚𝑐̅
+

∑ 𝐾0𝑚−1
𝑖=1 (2𝑠𝜆 sin�

𝜋𝑖
𝑚�)

𝜋𝑚𝐷2𝑐𝜏̅
�,             (S132) 

Hence 

�𝛿𝑐
𝑐̅
�> 1

�𝜋𝐷2𝑐̅𝜏𝑚
�ln(𝜆

𝑎
) + ∑ 𝐾0𝑚−1

𝑖=1 (2𝑠
𝜆

sin �𝜋𝑖
𝑚
�) .                (S133) 

Eq. S133 is similar to Eq. S39. Then again for the limiting case 𝑠
𝜆
≪ 1 

we obtain the final expression 

𝛿𝑐
𝑐̅

> 1
�𝜋𝐷2𝑐𝜏̅

�ln� 𝜆
𝑚𝑎�

𝑚
+ �𝑚−1

𝑚
� ln �1.1228 𝜆

𝑠
� ,                     (S134) 

(see Eq. S44). 
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