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Text S1: Modeling Supplement 
Deactivation of a negative regulator: a distinct signal transduction mechanism, 
pronounced in Akt signaling 
Anisur Rahman and Jason M. Haugh 
 
Development of the model 
Our modeling approach here was to make simplifying assumptions so as to minimize the number 
of adjustable parameters and allow for ready understanding of the presented analyses.  It should 
be appreciated that a more realistic model of a particular signaling process would integrate 
additional interactions and modifications, and complexities such as subcellular 
localization/compartmentalization might need to be included.  In our view, more sophisticated 
modeling will be warranted once quantitative measurements corresponding to the modeled 
variables become available. 
 
We consider two distinct mechanisms by which a protein kinase might promote signal 
transduction through substrate phosphorylation: (I) increasing the activity of a positive regulator 
(activator) or (II) decreasing that of a negative regulator (deactivator).  In both cases, the 
common step is phosphorylation of the regulatory molecule by the kinase.  To describe this in 
the simplest manner possible, we consider that the relative activity of the upstream kinase may 
be represented by a time-dependent rate constant, kk(t). Neglecting concentration gradients and 
saturation of the upstream kinase or of the opposing (constitutively active) phosphatase(s), we 
express the conservation of phosphorylated activator (mechanism I) as follows. 

dAp

dt
= kk (t)A− kpAp; Ap(0) = 0     (S1) 

In the equation above, Ap is the concentration of phosphorylated activator, A is the concentration 
of unphosphorylated activator, and kp is the pseudo-first-order rate constant of protein 
dephosphorylation.  With the assumption that the sum of the phosphorylated and 
unphosphorylated regulator is conserved during the time scale of interest, we define the fraction 
of phosphorylated regulator as the dimensionless variable, φ, and we define the dimensionless 
signal function, s(t), to scale kk(t) by kp. 

A+ Ap = ATot = constant

φ =
Ap

ATot
; s(t) = kk (t)

kp

     (S2) 

Substituting these definitions into Eq. S1 yields Eq. 1 in the main text, reprised here. 

dφ
dt

= kp s 1−φ( )−φ"# $%; φ(0) = 0  

 
Up to this point, mechanism II is developed identically (i.e., Eq. 1 in the main text applies to 
both mechanisms), except for the conceptual distinction that the substrate of the kinase is a 
deactivator; therefore, D and Dp take the place of A and Ap, respectively. 
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Next we consider the downstream response element, which is found in either an inactive (off) or 
active (on) state, with concentrations R and R*, respectively.  Following analogous assumptions 
as above, we write conservation equations for two mechanisms — activation (mechanism I) and 
relief of deactivation (mechanism II) — as follows. 

dR*

dt
=

ka,0A+ ka,maxAp( )ATot−1 R− kd,0R
* (I)

ka,0R− kd,0D+ kd,minDp( )DTot
−1 R* (II)

"

#
$

%$
  (S3) 

In each of these equations, the first term describes activation, and the second, deactivation.  In 
mechanism I, the activation term contains contributions from both the unphosphorylated and 
phosphorylated activator, with rate constants ka,0 and ka,max, respectively (dividing the activation 
term by the constant ATot makes these rate constants pseudo-first order); the deactivation rate 
constant is fixed at kd,0.  Conversely, in mechanism II, the deactivation term contains 
contributions from both the unphosphorylated and phosphorylated deactivator, with rate 
constants kd,0 and kd,min, respectively (dividing the deactivation term by the constant DTot makes 
these rate constants pseudo-first order); in this mechanism, the activation rate constant is fixed at 
ka,0.  With the assumption that the total concentration of the response element (RTot = R + R*) is 
constant, and with the definition ρ = R*/RTot (along with the definition of φ for each mechanism), 
Eq. S3 is modified to obtain Eq. 2 in the main text, reprised here. 

dρ
dt

=
ka,0 + ka,max − ka,0( )φ"# $% 1− ρ( )− kd,0ρ (I)

ka,0 1− ρ( )− kd,0 − kd,0 − kd,min( )φ"# $%ρ (II)

&

'
(

)
(

 

The initial conditions are assigned as follows, so that ρ is stationary when φ = 0 for either 
mechanism. 

ρ(0) = ka,0
ka,0 + kd,0

      (S4) 

To set the models for mechanisms I and II on a common basis for comparison, we enforce that 
both mechanisms yield the same maximum steady-state value of ρ (i.e., with φss =1), which is 
achieved if we define a common, dimensionless gain parameter, g, as follows. 

g = ka,max
ka,0

=
kd,0
kd,min

      (S5) 

Defining K = ka,0/kd,0, each conservation equation is reduced to a dimensionless form with only 
two adjustable constants (g and K) as follows.  Thus, main text Eq. 2 was reduced to main text 
Eq. 4, reprised here. 

1
kd,0

dρ
dt

=
K 1+ g−1( )φ"# $% 1− ρ( )− ρ (I)

K 1− ρ( )− 1− 1− g−1( )φ"
#

$
%ρ (II)

&

'
(

)
(

ρ(0) = K
1+K
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Analysis of the steady state 
For constant s, the steady-state solution of main text Eq. 1, φss, is as follows. 

φss =
s
1+ s

       (S6) 

For each of the two mechanisms, the steady-state response ρss is derived in terms of φss, and 
hence in terms of s, as follows. 

ρss =

K 1+ g−1( )φss"# $%
1+K 1+ g−1( )φss"# $%

=
K 1+ gs( )

1+K + 1+ gK( )s
(I)

K
1− 1− g−1( )φss +K

=
K 1+ s( )

1+K + g−1 1+ gK( )s
(II)

&

'

(
((

)

(
(
(

 (S7) 

To lend additional insight, the steady-state response may be expressed as a fold change relative 
to the basal value. 

ρss (s)− ρ(0)
ρ(0)

=

g−1( )s
1+K + 1+ gK( )s

(I)

g−1( )s
g 1+K( )+ 1+ gK( )s

(II)

"

#

$
$

%

$
$

  (S8) 

As one might expect, each of these fold-change expressions can be rearranged to give the 
familiar hyperbolic form.  Adopting the vernacular of a pharmacological dose-response 
relationship, we define the EC50 here as the value of s that yields the half-maximal value of the 
fold change.  By rearrangement of Eq. S8, we obtain 

EC50 =

1+K
1+ gK

(I)

g 1+K
1+ gK

(II)

!

"

#
#

$

#
#

     (S9) 

By inspection of Eq. S9, one concludes the following. 
1) The EC50 value of mechanism I is less than 1, the value of s for which φss = 0.5, provided that 

g > 1 (phosphorylation activates the regulator).  Therefore, mechanism I generally saturates at 
a lower value of s relative to phosphorylation of the positive regulator.  The substrate of the 
activator (the response element in the ‘off’ state) is progressively depleted as the input 
increases, and so there is sub-linear sensitivity of the response with respect to the increasing 
activity of the activator.  This is the nature of a sequential activation pathway with potential 
for saturation at each step. 

2) The EC50 value of mechanism II is greater than 1, the value of s for which φss = 0.5, provided 
that g > 1 (phosphorylation deactivates the regulator).  Therefore, II generally saturates at a 
higher value of s relative to phosphorylation of the negative regulator.  In this case, the 
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substrate of the deactivator (the response element in the ‘on’ state) becomes more abundant as 
the input increases, and so there is supra-linear sensitivity of the response with respect to the 
decreasing activity of the deactivator.  This offsets the decreasing sensitivity of φ with respect 
to s. 

3) Mechanism II has an EC50 value that is greater, by a factor of g, than that of I.  Thus, as g is 
increased to enhance the maximum fold-change of the response, the dynamic range of s (over 
which the response shows near-linear sensitivity) shrinks for I, whereas it is expanded for II. 

 
Since g is defined so that the maximum and minimum values of ρss(s) are the same for both 
mechanisms, the higher EC50 for mechanism II implies a lower sensitivity in the limit s, φss << 1, 
as shown in Fig. 1d&e.  For mechanism II, greater sensitivity near saturation implies low 
sensitivity when the system is far from saturation, whereas the opposite is well appreciated to be 
true for the ‘canonical’ mechanism I. 
 
Analysis of time scales 
Transient behaviors of the two mechanisms are shown in Fig. 2 of the paper.  The results were 
obtained by numerical integration of the differential equations, using a stiff implicit solver in 
MATLAB.  Though this is simple enough, we find that approximations of the ‘exact’ solutions 
are instructive.  Such analyses are outlined below. 
 
In the examples shown in Fig. 2a&b, a step change in the input function s(t) is assumed, i.e., 
constant s for t > 0.  The transient solution of main text Eq. 1 for these conditions is as follows, 
with φss taken from Eq. S6. 

φ(t) = φss 1− exp − 1+ s( )kpt"# $%{ }     (S10) 

Therefore, the kinetics of φ(t) approaching the steady-state value become progressively faster as 
s increases, with a time scale of [(1 + s)kp]–1.  Based on the parameter values chosen for the 
calculations shown in Fig. 2, we reasoned that the kinetics of φ(t) were relatively fast.  With this 
conjecture, we substitute the approximation φ(t) ≈ φss in main text Eq. 2 and simplify as follows. 

dρ
dt

≈

kd,0
1− ρss

ρss − ρ( ) (I)

ka,0
ρss

ρss − ρ( ) (II)

#

$

%
%

&

%
%

    (S11) 

For the calculated examples, kd,0 = 0.1kp, ka,0 = 0.005kp, and ρss varies from 0.047 (s = 0) and 
0.33 (s >> 1).  Therefore, we confirm that the time scale of φ(t) is never rate limiting under the 
conditions tested. 
 
This analysis also shows how the kinetics of ρ(t) for mechanism I generally become faster, and 
how the kinetics for II become slower, as s increases.  By inspection of Eq. S11 above, we 
identify the characteristic time scale τ as the inverse of the effective rate constant, i.e., with  
dρ/dt ≈ τ-1(ρss – ρ).  The time constant thusly identified for mechanism I is (1 – ρss)/kd,0, which 
decreases (faster kinetics) as ρss increases.  As explained in the main text, this is intuitive because 
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signaling increases the frequency of activation.  The time constant for mechanism II is ρss/ka,0, 
which increases (slower kinetics) as ρss increases; here, signaling decreases the frequency of 
deactivation, while that of activation is constant. 
 
In the examples shown in Fig. 2c&d, a time-decaying input was considered. 

s(t) = s(0)exp −kdecayt( )      (S12) 

The rate constant of decay was kdecay = 0.03kp, i.e., slow enough for φ(t) to respond according to 
the following quasi-steady state approximation. 

φ(t) ≈ s(t)
1+ s(t)

       (S13) 

It is readily shown that this function decays, on a relative basis, slower than does s(t).  This is 
intuitive when s(t) >> 1, because φ(t) is pegged close to 1.  This insight along with the steady-
state sensitivity results presented in Fig. 1d&e provides at least a qualitative explanation of the 
kinetics shown in Fig. 2 c&d.  For mechanism I, the slow decay of φ(t) for saturating s(0) is 
compounded by the modest sensitivity of ρ to φ(t) near saturation (Fig. 1d); thus, the response 
peaks rapidly but decays slowly under such conditions (Fig. 2c).  In contrast, mechanism II 
shows ultrasensitivity to φ(t) in that regime (Fig. 1e); thus, after a prolonged equilibration period 
(reflected in the time at which the response achieves its peak, consistent with the slow kinetics 
shown in Fig. 2b), the time scale associated with the decay of the response is much closer to that 
of s(t) (Fig. 2d). 
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Figure S1 Multiple examples of the indirect activation mechanism (mechanism II) 
downstream of Akt. In each example, the kinase activity of Akt is considered the input, 
and its substrate is a negative regulator (deactivator). a) Phosphorylation of TSC2 results 
in reduced GTP-activating protein (GAP) function, indirectly promoting accumulation of 
the active, GTP-bound form of Rheb. Rheb-GTP goes on to activate mTOR (not pictured 
here). b) Phosphorylation of PRAS40 results in 14-3-3 protein binding that prevents 
association with PRAS40 with mTOR. This liberates mTOR for interactions with its 
substrates. c) Phosphorylation of GSK3α /β  inactivates the kinase, resulting in reduced 
phosphorylation of β-catenin. As a consequence, active β-catenin accumulates. d) 
Phosphorylation of BAD prevents it from binding Bcl-2/-xL. This frees Bcl-2/-xL to 
promote cell survival by maintaining the integrity of the outer mitochondrial membranes. 
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Figure S2 Illustration of the steady-state sensitivities of mechanisms I and II as 
phosphorylation of the regulator approaches saturation. In both cases, progressive 
increases in the input signal eventually result in phosphorylation of most of the regulator 
(indicated by –P) at steady state. In the case of mechanism I, the regulator has a positive 
influence on the downstream response, and the phosphorylated form is more active. 
Near saturation, a further increase in the input results in only a slight fractional gain in 
the activity of the positive regulator. Conversely, in the case of mechanism II, the 
regulator has a negative influence on the downstream response, and the phosphorylated 
form is less active. Near saturation, a further increase in the input results in a dramatic 
fractional change (reduction) in the remaining activity of the negative regulator. 
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Figure S3 Replotting of Fig. 2a to better show the early kinetics. Initial responses of 
the direct activation mechanism (mechanism I) to step changes in s, from zero to the 
indicated values of s(0), are shown. Time is given in units of kpt; parameters are K = 0.05, 
g = 10, kd,0 = 0.1kp. For each curve, the midpoint between ρ(0) and ρss is indicated by the 
inverted triangle, illustrating that the time scale becomes faster as the input increases. 
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Figure S4 Identification of activation mechanisms I (green) and II (red) in the 
Akt/mTOR signaling network. 
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Figure S5 Temporal response of an incoherent feedforward motif with direct 
activation of an activator by mechanism I and indirect activation of an inhibitor by 
mechanism II. Parameter values are the same as in Fig. 3c, and kd,0 = 0.1kp for both I and 
II. Values of the input, s, are as indicated for each curve, and time is expressed in units of 
kpt. Note that high values of s yield an adaptive response due to the inherent disparity in 
time scales for I and II. 
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Figure S6 Analysis of a coherent feedforward loop (FFL) with direct and indirect 
activation of two activators in parallel. a) Hypothetical circuit diagram. b) Signaling in the 
mTOR network that loosely maps to the hypothetical circuit. c) Steady-state response of 
the coherent FFL, assuming additive contributions to the output, according to 

Output = (αρ I + βρ II)/(1 + αρ I + βρ II). 
Parameter values are K = 0.05 and g = 100 for both I and II; the parameters for the output 
function are α  = 0.5, β  = 1. Note that the output shows a broad sensitivity, over several 
logs of s, due to the disparity between the saturation of I and II. d) Kinetics of the system, 
with the same parameter values as in c and kd,0 = 0.1kp for both I and II. Values of the 
input, s, are as indicated for each curve, and time is expressed in units of kpt. Note that 
high values of s provoke an initial rapid increase due to activation of I, followed by 
slower increase due to delayed activation of II. 
 


