Supplementary Table S4. Review of Collagen Hydrogel Mechanical Characterization | Deformation
mode | Time scale of deformation | Strain scale of deformation | Parameters varied | Highlights of study | Reference | |--------------------------|---|-----------------------------|--|---|-----------| | Single-mode stu | dies | | | | | | Tension | 0.067%/s | 30–50% | Collagen
concentration,
polymerization pH | Fiber structure imaging (confocal reflectance) during strain application; longer, thinner fibers | 60 | | | 0.07%/s | 0–10% | Addition of polymers
(including collagen)
to PLGA hydrogels | correlate with higher strain
Collagen strengthens PLGA
hydrogels | 18 | | | 0.67%/s | 8–18% (break) | Addition of GAGs and fibroblasts to collagen hydrogels | GAGs increase tensile
modulus; fibroblasts reduce
modulus | 28 | | | 0.8%/s | 17–56% (break) | Addition of various crosslinkers to collagen hydrogels | Crosslinkers increase tensile strength but reduce extensibility | 15 | | | 1.67%/s | Not stated | Collagen concentration | Studied EC traction in constrained or floating hydrogels; found larger capillary structures in constrained gels | 77 | | | 5%/s (step)
followed by
relaxation | 5–20% | Addition of agarose
(varying
concentration) to
collagen hydrogels | Agarose slows hydrogel relaxation and reduces hydrogel compressibility | 55 | | Compression (unconfined) | 0.167%/s | 2–5% | Addition of GAGs | GAGs increase compression modulus | 85 | | Compression (confined) | 0.1%/s | 0–10% | None | Anisotropy measurement
during strain application;
find that interstitial flow
and fiber bending regulate
stress response | 65 | | | 1%/s | 5–15% | pН | Compression modulus
increases with pH; ECs
grown on rigid hydrogels
migrate less but form
deeper networks | 13 | | | Step (rate
unspecified)
followed by
relaxation | 3–20% | Collagen concentration | Compression modulus increases with collagen concentration | 44 | | Shear
(oscillatory) | 0.016–16 Hz | 2% | Addition of protein supplements | Collagen breaks down under
shear with oscillation
frequency above 3 Hz | 54 | | | 0.1 Hz | 0.5% | Collagen
concentration,
addition of GA | G' increases with concentration but pore size decreases; decoupled pore size and shear modulus and found cell spreading and migration depend primarily on pore size | 41 | | | 0.1–1 Hz | Not stated | Addition of protein supplements | Fibronectin or laminin supplements at high concentration reduce G' and G" of hydrogels | 72 | | | 0.1–100 Hz | 5% | Temperature, addition of GA | G' and G" are frequency independent at 5% strain; shear moduli increase with temperature and addition of GA | 26 | (continued) ## Supplementary Table S4. (Continued) | Deformation
mode | Time scale of deformation | Strain scale
of deformation | Parameters varied | Highlights of study | Reference | |---|--|--------------------------------|--|--|-----------| | Shear (oscillatory) (continued) | 0.4 Hz | 5% | Addition of agarose | Agarose increases G' but leaves gross fiber structure unchanged | 16 | | (continued) | 0.5–1 Hz | 5% | Collagen vs. fibrin | Fibrin stiffer than collagen at same concentration | 59 | | | 1 Hz | 0.8% | Polymerization
temperature | Modified temperature and measured shear moduli throughout polymerization; final G' and G' decrease slightly at higher temperatures | 47 | | | 1.6 Hz | 5% | Polymerization pH | G' and G" are frequency independent at 5% strain; shear moduli increase with pH | 34 | | | 0.1–10 Hz | n/a (0.5 Pa) | Addition of GAGs | Chondroitin sulfate increases
ECM void fraction,
decreasing shear modulus;
dextran does not affect
mechanical properties | 21 | | Shear (creep) | n/a | n/a (9.5 Pa) | Addition of GA | GA increases shear modulus;
Voigt–Kelvin model
describes creep test well | 30 | | Multimode studies | S | | | describes ereep test wen | | | Tension
Compression
(unconfined) | 0.03-0.04%/s
3.6%/s | 0–40%
15–30% | Polymerization
temperature, pH,
ionic strength | Tensile and compression
moduli increase with pH;
fabrication at physiological
temperature and pH does
not result in physiological
strength | 35 | | Tension
Compression
(unconfined) | 0.6%/s
2.76%/s | 20–80%
15–60% | Collagen source, concentration | High oligomer content may
be linked to increased
hydrogel strength | 12 | | Shear (oscillatory) | 1 Hz | 1% | | | | | Compression
(unconfined)
Shear
(oscillatory) | 2.76%/s | 10–30% | Collagen
concentration,
molecular weight | Compression and shear
moduli are positively
correlated with oligomer
content (molecular weight);
effect is stronger than that
of concentration | 76 | | | 1 Hz | 1% | | | | | Compression
(confined)
Shear
(oscillatory) | 0.08%/s for
ramp tests
0.016–16 Hz | 0–10%
1% | None | Creep, ramp, and sinusoidal compression as well as oscillatory shear. Found that collagen hydrogels exhibit Maxwell behavior in both shear and compression with similar timescales; shear modulus is larger than compression modulus | 53 | EC, endothelial cell; GA, glutaraldehyde; GAG, glycosaminoglycan; PLGA, poly (lactic-co-glycolic) acid.