

Supplementary Figure 1. Arrangement of endogenous Vitis vinifera B virus (VvinBV) genome components at two loci on the reference Vitis vinifera genome.

OglabChr07_77570007766000/2-539TAGGTTTGTCATTTCATCTGAGCAATGCAATGCAATATTGTATCAACTATGCAATTTTTAACT-TTATTTCACAATCCATTATTACATACCTAACTAA	98
ObartChr07_7905000.7930000/1-438 TAGGTTTGTCATCTGAGCAATGCAATGCAATGCAACTATGGCTAGCGATTTTTAACT - TTATTTCACAATCCATTATTACATACCTAACTAATTATATGTTTG 10	38
OsindChr07_90110009032000/1-302 TAGGTTTGTCATTTCATCTGGCATATCGCATATTGTATCAACTATGGATAGCGATATGTTG-GAGAAAAAAAAAA	2
OnivaChr12_1262500012646000/12TAGGTTTGTCATCTGAGCAATGCAATGCAATATTGTATCAACTATGGATAGCGATTATTGTTG-GAGAAAAAAAAAA)4
OglumChr01_3980000039819000/JL/TAGGTTTGTCATTTCATCTGAGCAATGCAATGCAATATTGTATCGACTATGGCTAGCGATTATTGTTG-GAGAACAAAAAACATA	ð
OsjapChr07_90110009013000/1-320 TAGGTTTGTCATTCATCTGAGCAATGCATATTGTATCAACTATGGCTAGCGATTGTTGGGAGAACCAAAAACATACATACATACATACATA	36
OglabChr07_7757000.7766000/210299 GATGCTATATACCTAGAAATCTAAAAATCTAACAAAAGCAAGTTTGAATTCAAACTTGCTTTGAACTAGTTAGT	17
Obart Chr07_7905000.7930000/1-3088 GATGCTATATACCTAGAAATCTAACAAAAGCAAGTTCAAATTCAGTTCAAACTTGCTTTGAACTAGTTAGT	17
OsindChr07_90110009032000/1-302	
OnivaChr12_1262500012646000/1-2	
OglumChr01_3980000039819000/1-1	
OsjapChr07_9011000.9013000/1-B200 ATACATACATACATACA	23
OglabChr07_7757000.7766000/12339 AAAGTTTCATACTCATTTGAATTGGGGTATATAGTAAATTTCAATCATGGTGCCCCGGGCCACCATGGAGCATCAAACAAA	26
ObartChr07_7905000.7930000/1-3998 AAAGTTTCATACTCATTTGAATTGGGGGTATATAGTAAATTTCAATCATGGTGCCCCGGGCACCATGGAGCA	37
OsindChr07_90110009032000/1-3892	96
OnivaChr12_12625000126460000052)6
OglumChr01_3980000039819000/1-1-)
OsjapChr07_9011000.9013000/1-320	24
<i>OglabChr</i> 07_77570007766000/23229ATATATATATATATATATATATATATATATATATATA	35
<i>ObartChr07_7905000.7930000/1-2</i> 988 NNNNNNNNN CCTCTCTCGGCTGTCAGCTTTAAGCTTACCACAC 3/	29
OsindChr07_9011000.9032000/1-B022 ATATATATATATATATATATATATATATATATATATA	98
OnivaChr12_1262500012646000002ATATATATATATATATATATATATATATATATAT	/8
<i>OglumChr</i> 01_39800000398190002₽.ATATATATATATATATATATATATATATATATATATAT	وز
OsjapChr07_90110009013000/1-3229 ATATATATATATATATATATATATATATATATATATAT	16
OglabChr07_7757000.7756000/245389 CACACTECETEETEETEETEETEETEETEETEETEETEETEETE	39
ObartChr07_7905000.7930000/139303 CACACTECETEETEETEETEETEETEETEETEETEETEETEETE	33
OsindChr07_90110009032000/1-38892 CACACTECETEETEETEETEETEETEETEETEETEETEETEETE)2
OnivaChr12_12625000126460000722CACACTGCGTGGTCGGTATGCGAACATATCGTAATTAAAACACACAC	32
<i>OglumChr</i> 01_3980000039819001024CACACACACACACACACACACATATCGTAATTAAAACACACAC	<i>i</i> 3
OsjapChr07_9011000.9013000/1-2220 CACACTECETEETCEETAEETAAECACATATCETAATTAAAACACACAAETATTCAEAACTECAEAAAATTTTCATACAACACACAC	20

Supplementary Figure 2. Organization of the host sequence surrounding an Oryza sativa B virus (OsatBV) insertion. A complete OsatBV-compAsc1 insertion was shared between *Oryza glaberrima* and *Oryza barthii* (the florendovirus sequence has been replaced by Ns and highlighted in red – the *O. barthii* insertion was not completely assembled in its 5' end), and is located on chromosome 7. The other four species are included to describe the structure of the empty site. Upon insertion, some sequence was lost (yellow), and some was added, probably due to the DNA repair mechanism (blue). The length and sequence of the dinucleotide repeat evolved independently in each species (green).

Supplementary Figure 3. Mapping of express sequence tags (ESTs) to florendovirus genomes. (a) Citrus clementina virus sequence cluster 2 (CclemV-sc2) and (b) Prunus persica virus sequence cluster 1 (PpersV-sc1). The GenBank accessions of the ESTs from *C. clementina* are 1) FC919332.1, 2) FC919333.1, 3) CX290102.1, 4) CX290168.1, 5) CX289814.1, 6) CX290170.1, 7) CX290502.1, 8) FC919335.1, 9) CX290711.1, 10) FC919329.1, 11) FC919330.1, 12) FC919334.1 and 13) FC919331.1. These ESTs were amplified from globular embryo tissue. The GenBank accessions of the ESTs from *P. persica* are 1) DW343673.1, 2) DW344610.1, 3) DN553877.1, 4) DN555087.1, 5) DW347536.1, 6) DW341851.1, 7) AJ873823.1, 8) AJ872920.1, 9) DW341303.1, 10) DW342036.1, 11) DW342153.1, 12) DW347617.1, 13) DW341785.1 and 14) DW342903.1. The GenBank accessions beginning with DW, DN and AJ were amplified from shoot tissue, leaf tissue and fruit mesocarp plus epidermis tissue 30 days after bloom, respectively.

Supplementary Figure 4. Distribution of sRNAs (21-24nt) targeting VvinAV in (a) grape, (b) VvinBV in grape and (c) AtrichA, AtrichBV and AtrichCV in *A. trichopoda*. The density of the reads corresponding to positive (above the x-axis) and negative (below the x-axis) strand RNAs transcribed from leaves (in red), flowers (in blue) and fruits (in green) are shown.

Virus	VvinAV-sc1	VvinBV-	VvinCV-sc1	VvinDV-	VvinDV-	VvinDV-						
species		compAsc1	compAsc2	compBsc1	compBsc2	compBsc3	compBsc4	compBsc5		compAsc1	compAsc2	compBsc1
VvinBV-	80.9/88.7/85.9											
compAsc1	86.1/89.2 ¹											
VvinBV-	81.5/88.6/86.7	94.2/99.8/99.2										
compAsc2	86.3/89.2	99.1/98.6										
VvinBV-	79.5/87.9/80.0	95.8/98.9/73.3	89.9/98.7/73.7									
compBsc1	/69.2	/67.9	/67.9/									
VvinBV-	82.1/88.9/82.4	91.5/98.9/76.5	90.4/99.1/76.9	93.6/97.8/96.1								
compBsc2	/71.7/	/68.8	/68.3/	/76.3								
VvinBV-	80.0/87.6/80.0	95.5/98.6/73.3	93.2/98.4/73.7	93.3/99.7/100	89.2/97.5/96.1							
compBsc3	/71.5	/68.9	/68.9	/77.2	/96.5							
VvinBV-	78.3/87.9/80.4	93.8/98.9/73.7	90.4/98.7/74.1	90.6/100/99.2	87.5/97.8/96.5	91.7/99.7/99.2						
compBsc4	/70.4	/67.5	/67.1	/75.4	/96.3	/96.9						
VvinBV-	79.7/87.5/79.6	96.4/98.6/72.9	91.1/98.4/73.3	92.2/99.5/99.6	87.6/97.5/95.7	94.7/99.7/99.6	92.5/99.5/98.8					
compBsc5	/69.7	/67.1	/67.1	/76.3	/94.3	/96.9	/98.2					
VvinCV-sc1	55.5/46.2/57.3	51.7/46.8/56.1	52.1/46.6/56.1	51.6/47.1/56.5	51.3/46.8/57.3	51.7/47.1/56.5	49.7/47.1/55.7	51.0/46.9/56.9				
	69.8/67.2	70.4/68.0/	70.7/67.5/	/55.6	/55.8	/55.3	/55.0	/54.8				
VvinDV-	56.1//59.2	53.7//57.3	53.5//57.3	53.1//55.3	52.2//56.5	53.3//55.3	53.6//55.3	54.0//55.3	50.1//67.1			
compAsc1	70.9/69.4	71.3/71.0	/71.0/	/56.8	/60.8	/60.1	/58.8	/58.3	74.8/74.0			
VvinDV-	54.0//58.0	51.5//56.9	51.8//56.9	51.3//54.5	50.8//55.7	51.7//54.5	52.2//54.5	51.8//54.9	48.3//66.7	86.8//95.7		
compAsc2	71.5/69.9	71.1/71.0	73.5/71.0	/59.4	/62.1	/62.7	/60.8	/61.0	73.7/74.0	95.4/97.3		
VvinDV-	55.3//	53.4//	53.3//	53.3//	52.7//	52.9//	54.0//	53.8//	50.8//	89.6//	82.5//	
compBsc1	//	//	//	//	//	//	//	//	//	//	//	
VvinDV-	50.7//	49.1//	48.9//	48.2//	47.7//	48.3//	48.3//	49.0//	45.8//	74.5//	67.6//	71.2//
compBsc2	//	//	//	//	//	//	//	//	//	//	//	//

Supplementary Table 1. Pairwise sequence comparisons for different regions of the florendovirus genomes in Vitis vinifera

¹Values provided in each table cell are % nucleotide sequence identities for the intergenic region (top left), movement protein (top middle), aspartic protease domain (top right), reverse transcriptase domain (bottom left) and RNase H1 domain (bottom right).

	Virus genome			No. of				
	length		No. of	full lgth		Full Igth	Mean Igth	Mean Igth
Virus species ¹	(nts)	Covg. ²	frags ³	frags ⁴	Copies	copies	(bp) ⁷	(%) ⁸
VvinAV_sc1	7353	273311	398	0	318	0	860	11.70
VvinAV_sc2	7683	166175	296	1	247	2	673	8.76
VvinAV_sc3	7099	1106470	4340	0	4090	0	270	3.81
VvinBV_compAsc1	6225	217735	194	10	175	13	1244	19.99
VvinBV_compAsc2	6264	153379	182	2	163	4	942	15.03
VvinBV_compBsc1	6258	269549	257	11	206	14	1308	20.91
VvinBV_compBsc2	6194	524120	404	26	324	33	1618	26.12
VvinBV_compBsc3	6145	67223	51	7	49	7	1372	22.33
VvinBV_compBsc4	6137	96287	114	1	92	1	1046	17.05
VvinBV_compBsc5	6361	12743	44	0	40	0	318	5.01
VvinCV_sc1	7640	403571	608	1	517	1	781	10.22
VvinCV_sc2	7640	124991	284	0	255	0	490	6.42
VvinDV_compAsc1	5566	2598967	3504	3	3362	5	773	13.89
VvinDV_compAsc2	5474	2900579	3642	2	3441	2	843	15.40
VvinDV_compBsc1	5633	845502	1058	14	952	16	888	15.77
VvinDV_compBsc2	5739	1531840	2107	0	2002	0	765	13.34

Supplementary Table 2. Size distribution and copy number of endogenous florendoviral elements in Vitis vinifera

¹Acronyms of virus species are defined in Supplementary Data 3.

²Cumulative *Vitis vinifera* genome coverage (bp) by the virus species.

³Number of fragments of endogenous virus sequence before the "long join procedure".

⁴Number of full length fragments of endogenous virus sequence (≥95% of virus genome) before the 'long join procedure'.

⁵Number of fragments of endogenous virus sequence after the 'long join procedure'. The 'long join procedure' connects two parts of contiguous viral sequence that have been interrupted by other noncontiguous viral sequences that have inserted more recently. ⁶Number of full length fragments of endogenous viral sequence (≥95% of virus genome) after the

"long join procedure". ⁷Mean length (bp) of all fragments of endogenous viral sequence after the 'long join procedure'.

⁸Mean length of all fragments of endogenous viral sequence after the 'long join procedure' but expressed as a percentage of the length of the reference virus genome or component sequence.

Table 3. Analysis of redundancy in sequences flanking endogenous florendovirus loci in the *Vitis vinifera* genome

	No. of joined loci with length ≥ 1 kbp ¹	No. of flanking sequences ²	Largest cluster of flanking sequences (≥90% nt identity) ³	Largest cluster of flanking sequences (≥80% nt identity) ³	Annotation of the largest cluster ³
VvinAV	103	206	6	13	VvinBV-comB
VvinBV	238	476	5	5	Gypsy
VvinCV	56	112	2	2	
VvinDV	232	464	3	5	Gypsy
Gret1	328	656	124	261	Gret LTR

¹To obtain joined loci, florendovirus and Gret1 annotations obtained with RepeatMasker were joined when there was less than 1 kbp distance between one another (joined loci). ²Joined loci with a length >1 kbp were then selected and the flanking 500 bp sequences extracted.

²Joined loci with a length >1 kbp were then selected and the flanking 500 bp sequences extracted. The flanking sequences from each of the EFE and from Gret1 were pooled and sequences were grouped into clusters on the basis of either an 80 or 90% nucleotides identity threshold. ³The number and identity of sequences found in the largest cluster is indicated.

Species	Genome	Accession number					
•	type	Whole genome	Chr3S ²				
O. s. ssp. japonica	AA	http://rice.plantbiology.msu.edu/	**3				
O. rufipogon	AA	PRJEB4137	**3				
O. s. ssp. indica	AA	http://rise2.genomics.org.cn/page/rice/download.jsp	**3				
O. nivara	AA	AWHD0000000.1	JNWG0000000				
O. glaberrima	AA	ADWL0000000.1	ADWL0100000				
O. barthii	AA	ABRL0000000.2	ABRL00000000.1				
O. glumaepatula	AA	ALNU0000000.2	ALNU00000000.1				
O. longistaminata	AA	*1	**3				
O. meridionalis	AA	ALNW0000000.2	ALNW00000000.1				
O. punctata	BB	AVCL0000000.1	JNWE0000000				
O. minuta	BB	-	JJNN00000000.1				
O. minuta	CC	-	JJNN00000000.1				
O. officinalis	CC	-	JJMQ0000000				
O. brachyantha	FF	AGAT0000000.1	JNWF0000000				
O. granulata	GG	-	ALNT0000000.1				
Leersia perrieri	-	ALNV0000000.2	ALNV00000000.1				

Supplementary Table 4. Oryza species and sources of genome sequences used in this study

¹O. longistaminata genome assembly was kindly made available by W. Wang. ²Sequences of the short arm of chromosome 3. ³The genes on the short arm of Chromosome 3 (Chr3S) of these species were extracted from the whole genome assembly.