
 
 

Supplementary Figures 

 

Supplementary Fig. 1. Fabrication process of the micro-scallop. (a) The negative mold of the micro-scallop is made 

by 3-D printing. The mold for the hinge is much shallower and narrower than the two shells. Shown in the inset is an 

enlargement of one mold. (b) As-printed molds filled with PDMS polymer containing green fluorescent powder 

imaged under UV light (scale bar is 1 mm). (c) 3-D model of the resultant micro-scallop. The PDMS part (green) is 

released after curing and two micro-magnets are attached in the orientation indicated in the schematic. A more 

detailed description of the fabrication procedure is illustrated in Supplementary Fig. 3. 

 

Supplementary Fig. 2. Detailed dimensions of the micro-scallop. Important dimensions of the micro-scallop are 

drawn in the figure in the unit of millimeter. 



 
 

 

Supplementary Fig. 3. Illustration of the micro-magnets attachment process. (a) Step 1, the first micro-magnet (left) 

is attached to the PDMS by glue, while its orientation is kept by the macro-magnet. (b) Step 2, after the fixation of 

the first magnet, the second micro-magnet (right) is attached to the PDMS by glue. The local field is dominated by 

the macro-magnet on the right, so the orientation of the second micro-magnet is kept in the opposite direction of the 

first. The macro-magnet is not drawn to scale. 



 
 

 

Supplementary Fig. 4. The actuation setup for the micro-scallop. The micro-scallop is not drawn to scale. 

 

Supplementary Fig. 5. Macro-scallop 3-D model and its top view illustrating the closing motion of the two shells. 



 
 

 

Supplementary Fig. 6. Propulsion experiments of the macro-scallop. (a) An illustration of the experimental setup for 

the macro-scallop. (b) Time-lapse pictures of asymmetric actuation of the macro-scallop in shear thickening fluid. 

The three pictures in the first line correspond to the slow opening half-cycle (~3 s) and the pictures in the second 

line correspond to the fast closing half-cycle (<1 s). The net displacement is observed by comparing the pictures at 0 

s and 4 s with the dashed line aligned with the tip of the macro-scallop at 0 s. 



 
 

 

Supplementary Fig. 7. Apparent dynamic viscosity of the shear thickening fluid. Power law model (dotted line) is 

used to fit the viscosity (black squares) in the shear rate range of 1.5~6 s
-1

. The change of first normal stress 

difference N1 of our shear thickening medium is two orders of magnitude smaller than the Boger fluid used in 
8
. 

Thus, the viscosity change is dominant during the swimming process. The error bars represent standard deviations. 

 

 

 

Supplementary Fig. 8. Oscillation test of the shear thickening fluid. The viscous modulus G’’ is more than 2 times 

larger than the elastic modulus G’ over the frequency range of 0.1~20 Hz, and the phase angle is 70º ~80º, which 

both indicate that the viscosity is dominant over elasticity for the shear thickening fluid. 



 
 

 

Supplementary Fig. 9. Apparent dynamic viscosity of the shear thinning fluid. Power law model (dotted line) is used 

to fit the data in the shear rate range of 1~100 s
-1

. The error bars represent standard deviations. 

 

 

 

 

Supplementary Fig. 10. Hysteresis of viscosity of the shear thickening fluid. When the shear rate increases from a 

low viscosity (blue squares), the transition occurs at a higher critical shear rate, while when the shear rate decreases 

from a high viscosity (red triangles), the transition takes place at a lower shear rate. The error bars represent standard 

deviations. 

 

 



 
 

 

Supplementary Fig. 11. The vertices of the computational mesh are concentrated near the surface of the macro-

scallop to improve resolution of the liquid-solid interface. The color in the lower half shows the velocity field of the 

fluid. 

 

 

 

Supplementary Fig. 12. Approximation of the viscosity for shear thickening fluid for convergence in numerical 

simulation. Red circles are measured data points in experiment, blue line is the trend line, and the black line is the 

approximation used in numerical simulation. 



 
 

 

Supplementary Fig. 13. Flow pattern (streamlines) due to a 2D tethered infinite “scallop” (pump) upon varying the 

opening α=85.7°(a), 60°(b), 30°(c) and 18°(d); position of the plates are marked by thick red lines. The 

corresponding vector velocity field is in (a) for the closing stroke. 

 



 
 

 

Supplementary Fig. 14. The scaled strain rate Γ/ω for the 2D infinite tethered “scallop” (pump) vs. a polar angle φ 

for the same openings α as in Supplementary Fig. 13 (shown in radians). Solid lines stand for the inner region and 

the dashed lines stand for the outer region. 



 
 

 

Supplementary Fig. 15.  Numerical simulation of propulsion by reciprocal motion in a shear thickening fluid. 

Enlarged images of fluid velocity and viscosity fields around the swimmer in shear thickening fluid. 

  



 
 

 

Supplementary Fig. 16.  Interface-free Micro-scallop swimming test in shear thickening fluid while falling under 

gravity. (a) Schematic showing the actuation setup for the micro-scallop, which is not drawn to scale. The micro-

scallop is immersed in the fluid, far away from the meniscus and all walls. The propulsion is in the X direction, 

which is independent from the falling motion caused by gravity in the Y direction. The video is taken by camera 

from the side. (b)-(d) Time lapse composite-pictures of 5 frames at an interval of 40 s (10 strokes). The Y positions 

of the micro-scallop in the three pictures are aligned at 0 s for comparison. (b) Asymmetric actuation results in net 

propulsion in X direction while the swimmer falls in Y direction (see movie S upper panel). (c) Symmetric actuation 

results in no net propulsion in X direction (see Supplementary Movie 9 middle panel). (d) No actuation of the 

swimmer results in a vertical falling in the direction of gravity. A very weak (~1.5 G) homogeneous magnetic field 

is used to keep the swimmer in fixed orientation while falling. (e) The displacement plot of the three tests in (b)-(d). 

The time interval between dots is 20 s (5 strokes). The swimmer has a propulsion speed of 5.2±1.4 µm/s under 

asymmetric actuation, which is similar to the results observed when the swimmer is suspended by the air-liquid 

meniscus. In cases of symmetric actuation or no actuation, the swimmer falls vertically and shows no net 

displacement in X direction. 



 
 

Supplementary Notes 

Supplementary Note 1. Numerical simulation of the macro-scallop 

The numerical simulations of the macro-scallop in non-Newtonian and Newtonian fluids were conducted using the 

open-source CFD (Computational Fluid Dynamics) package FeatFlow (www.featflow.de). We configured the 3D 

simulation to use a pseudo 2D setup which means that the thickness of the swimmer and the computational domain 

are reduced. Thus the number of degrees of freedom in the simulation is significantly reduced as is the 

computational cost. In the following we will briefly explain the numerical methods used to simulate the macro-

scallop swimmers in Newtonian and non-Newtonian fluids. In our FeatFlow software the fluid is modelled by the 

incompressible Navier-Stokes equations which can be formulated as 

 (Supplementary Eq. 1) 

       ⃗    ⃗   (Supplementary Eq. 2) 

where we denote the constant density by  , the shear dependent viscosity by  , the unknown velocity and pressure 

by the pair   ⃗   , and the viscous stress tensor by          , in which     is the rate-of-strain tensor. 

This system of equations is discretized using the Finite Element Method (FEM) which is implemented in our 

FeatFlow CFD package together with the recent extensions of non-Newtonian fluids and dynamic mesh-adaptation 

for moving boundaries. 

Discretization in time is handled by the basic one-step  -scheme (3), which in general allows the selection of Crank-

Nicolson (     ) or the fully implicit Backward Euler-Scheme (   ). The time discretization scheme in general 

can be represented by the following system: 

For given  ⃗         and           , lets approximate    ⃗    
 ⃗⃗   ⃗⃗   

  
 

 (Supplementary Eq. 3) 

The system is then discretized in space using the Galerkin variational formulation of the Navier-Stokes equations. In 

our FEM framework we use the higher order       element pair for the spatial discretization, further aspects of the 



 
 

FEM approach are described in more detail in our previous work 
1
. Concerning the physical properties of the fluid, 

the density   is assumed to be constant, wheareas the viscosity   is calculated at each cubature point according to 

the given shear-dependent rheological model. The system needs additional adjustment because of the presence of 

moving boundaries (the macro-scallop). These are treated by the so-called Fictitious Boundary Method (FBM) 
1
 

which is a simple filter technique that decomposes the computational domain into a fluid and a solid subdomain in 

terms of the classification of the degrees of freedom. The fluid domain is then treated as if no FBM were applied, the 

solid subdomain interacts with the fluid subdomain by the imposed velocity Dirichlet boundary conditions (i.e. the 

rotational and translational velocity of the macro-scallop). The velocity of the macro-scallop is calculated by 

determining the hydrodynamic forces 
1
 that arise from the movement of the scallop. In order to improve the 

accuracy of the hydrodynamic force calculation we employ a grid-adaptation technique that is based on Laplacian 

smoothing using weights that force the vertices of the mesh to be concentrated at the fluid-solid interface 

(Supplementary Fig. 11). 

 

 

 

Supplementary Note 2. Modulation of viscosity as underlying mechanism of propulsion 

Let us consider an idealized tethered “scallop” (pump) composed of two infinite plates forming an angle   between 

them. The plates are co-rotating on a common axis with an arbitrary angular velocity  . For simplicity we assume 

that the suspending medium is a Newtonian fluid. It is possible, however, to extend this solution and construct the 

asymptotic expansion corresponding to weakly non-Newtonian fluid (e.g. shear thinning or thickening) by the 

method of perturbations 
2
, however for our qualitative purposes the leading order solution suffices.      

We consider the problem in the polar coordinates        The solutions for the streamfunction        in the Stokes 

approximation satisfy      . Following 
3
 and using an ansatz          we find the solution for   the ‘inner’ 

(in between plates) and ‘outer’ regions, respectively: 
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where     and    are the functions of    The velocity components    
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     ⁄ can be 

readily obtained from the Supplementary Equations (4-5); for the inner region we have: 
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On the plates at       the boundary conditions are satisfied, i.e.   
                

              The 

solution in the outer region has an analogous form. The streamlines (isolines of  ) are depicted in Supplementary 

Fig. 13a-d for four different openings,                 and    . The corresponding vector velocity field is 

shown for illustration in Supplementary Fig. 13a.  Note that the inner and outer solutions in Supplementary Equation 

(6) are singular at                , respectively. This singularity is probably a consequence of nonphysical 

geometry as infinite plate result in two disconnected semi-infinite fluid domains. Considering finite plates should 

regularize the solution, however, the closed-form solution in such case is not readily available. Nevertheless, the 

infinite plate approximation should provide an accurate description of the flow far from the plates’ ends at with for 

     .  

The components of the rate-of-strain tensor,    , for the inner region can be found from Supplementary Equation (6) 

as 
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Next we calculate the (squared) rate-of-strain    
 

 
       (the shear rate  ̇ is defined as  ̇    ), 
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The result in Supplementary Equation (7) holds for the outer region with     being replaced with   . Note that for an 

infinite scallop   is not a function of   and depends solely on  , i.e., for an arbitrary opening   has a constant (but 

not equal) values along the plates inside and outside.  

The corresponding plots of     are given in Supplementary Fig. 14a-d for the same four openings   as in 

Supplementary Fig. 13. This figure illustrates the underlying physics of the phenomenon, i.e., the plates play a role 

of the concentrator of the strain rate. Similarly to the electric capacitor concentrating the energy of the electric field 

in between two oppositely charged plates, the flapping plates concentrate the strain rate of the liquid sandwiched 

between the plates at small  . For Newtonian liquids this phenomenon is not important as both swimming and 

pumping are purely geometric, i.e. independent of time parameterization. Indeed, the fluid viscosity   does not 

depend on the strain rate and remains constant so that over a full stroke such “scallop” would neither pump nor 

swim. For the non-Newtonian liquid, however, this phenomenon determines the essence of the effect. Since the 

apparent fluid viscosity      is a function of the strain rate  , then the “scallop” modulates the viscosity of the 

suspending medium depending on contrast of the opening/closing frequencies. For shear thickening liquids the 

viscosity in the inner region could be considerably higher than that outside (compare   in Supplementary Fig. 14 c-d 

inside vs. outside). The dependence of the apparent viscosity on the strain rate distinguishes the liquid inside and 

outside the shells and results eventually in the free swimmer's locomotion or net momentum flux for a tethered 

pump. 

To understand the origin of the motility heuristically, consider the fundamental solution for the low-Re flow driven 

by a point force of magnitude        exerted on the fluid at the origin (this solution is known as Stokeslet 
4
). One 

can argue that far from the object the origin of the force is not important – it equally can be submerged jet or 

flapping tethered “scallop”. The properties of the source enters the solution integrally as a net momentum flux of 

magnitude   . If now the “scallop” becomes untethered, it will start moving with the characteristic speed,        ⁄ . 

The crucial property of the swimmer is that it is propelled in the ‘outer’ liquid with low (approx. constant) viscosity 

  , as in the outer region   is always small, see Supplementary Fig. 14 a-d, whereas the viscosity of the fluid 

sandwiched between the two plates  ̅    scales with the angular velocity of the fast (either closing or opening) 

stroke. The value of this internal viscosity determines the ‘power’    of the source,     ̅    , whereas major 

contribution to   ̅    occurs at small opening   during the fast phase. Thus, the swimmer velocity    reduces to 



 
 

     ⁄  ̅     ⁄   This relation is in agreement with the estimate based on scaling arguments in the main text. The 

finite net displacement over a full stroke is due to modulation of the source strength,     which depends on angular 

velocity   in a nonlinear fashion via  ̅      .  

 

 

Supplementary Note 3. Hysteresis of viscosity in shear thickening liquids 

To understand the difference in the experimentally measured pre-factors   we re-write the power-law rheological 

model at low- and intermediate shear rates  ̇ as 
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)
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,             ̇            

where   ̇           
is the critical shear rate at steady conditions 

5
.  

It has been found  first in 
5
, then in 

5, 6, 7
 that the transition taking place at at  ̇    ̇ possesses the properties of the 

phase transition of the first order. Namely, the transition is characterized by the hysteresis of viscosity upon varying 

the shear rate. In particular, in experiment with transient shear rate the value of viscosity depends on the prehistory 

of shear rate ramp: if the shear rate grows from a low viscosity state, the transition occurs at a higher critical shear 

rate than in steady state ( ̇    ̇). Analogously, if the shear rate decreases from a high viscosity state, the transition 

takes place at a lower values of transient shear rate comparing to the steady state ( ̇    ̇) 
5
. 

The hysteresis of viscosity explains the asymmetry in propulsion upon exchanging between (fast) closing and 

opening strokes. Since opening and closing strokes are not identical (at opening the angle between plates changes 

from 10° up to 295° and at closing it decreases from 295° down to 10°). For (fast) opening, the shear rate decreases 

from a high viscosity state, and for the (fast) closing cycle the shear rate increases. In agreement with the hysteresis 

described in 
5
 the “scallop” propelled by (fast) opening stroke swims better than the one than relies on (fast) closing 

stroke. 



 
 

The hysteresis of the shear thickening fluid was measured via a shear rate ramp loop test first from       up to 

       and then immediately from        down to      . The loop was repeated for three times and the average is 

plotted in Supplementary Fig. 10. In agreement with the previsous works, the transition occurs at a higher critical 

shear rate when the shear rate increases from a low viscosity (blue squares), and vice versa a lower critical shear rate 

when decreasing (red triangles). 

This hysteresis explains the reason that the average displacement per cycle of the backward stroke is larger than that 

of the forward stroke, under the same ratio of closing and opening (the absolute value of pre-factor          in 

Fig. 4c is larger than          in Fig. 4b). Specifically, the closing and opening strokes of the macro-scallop are 

not identical: at closing, as the gap between the shells changes from large to small, the shear rate increases and thus 

the transition of shear thickening occurs at a higher critical shear rate; vice versa at opening, the gap increases, the 

shear rate decreases, and the critical shear rate is lower. Therefore, in the opening half-cycle, the swimmer exhibits 

higher average viscosity than that in the closing half-cycle, and consequently results in better propulsion. 
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