# Supplemental Material for

# PTX013, a potent cytotoxic agent against tumors and drug resistant cancer

Ruud P.M. Dings<sup>1</sup>, Joseph I. Levine<sup>1,2</sup>, Susan G. Brown<sup>2</sup>, Lucile Astorgues-Xerri<sup>3</sup>, John MacDonald<sup>4</sup>, Thomas R. Hoye<sup>2</sup>, Eric Raymond<sup>3</sup>, and Kevin H. Mayo<sup>1</sup>

Departments of <sup>1</sup>Biochemistry, Molecular Biology & Biophysics and <sup>2</sup>Chemistry, University of Minnesota, MN 55455 USA <sup>3</sup>INSERM U728 and Department of Medical Oncology, Beaujon University Hospital (AP-HP – PRES Paris 7 Diderot), 100 bd du Général Leclerc, 92110 Clichy, France <sup>4</sup>PepTx, Inc. MN USA

| Contents of Supplementary Material                                             | S1         |
|--------------------------------------------------------------------------------|------------|
| General Experimental Protocols                                                 | S2         |
| Synthesis Procedures and Spectroscopic Characterization Data for New Compounds | S3–S6      |
| PTX012 [from known compounds 1-3 (Scheme 1)]                                   | S3         |
| PTX013 [from known compound 4 and via new compound 5 (Scheme 2)]               | S4         |
| PTX014 [from known compounds 6 and 7 and via new compound 8 (Scheme 3)]        | S5         |
| PTX015 [from known compounds 9 and 10 (Scheme 4)]                              | S6         |
| References                                                                     | S7         |
| Copies of NMR Spectra                                                          | S8–S17     |
| <sup>1</sup> H NMR of <b>PTX012</b><br><sup>13</sup> C NMR of <b>PTX012</b>    | S8<br>S9   |
| <sup>1</sup> H NMR of Calixarene <b>5</b>                                      | S10        |
| <sup>1</sup> H NMR of <b>PTX013</b><br><sup>13</sup> C NMR of <b>PTX013</b>    | S11<br>S12 |
| <sup>1</sup> H NMR of Calixarene <b>8</b>                                      | S13        |
| <sup>1</sup> H NMR of <b>PTX014</b><br><sup>13</sup> C NMR of <b>PTX014</b>    | S14<br>S15 |
| <sup>1</sup> H NMR of <b>PTX015</b><br><sup>13</sup> C NMR of <b>PTX015</b>    | S16<br>S17 |

## **General Experimental Protocols**

<sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker 500 (500 MHz) or Varian Inova 500 (500 MHz) instrument. <sup>1</sup>H NMR chemical shifts in CDCl<sub>3</sub> are referenced to  $\delta$  7.26 ppm (CHCl<sub>3</sub>) and in methanol-*d*<sub>4</sub> to 3.31 ppm (CHD<sub>2</sub>OD). <sup>13</sup>C NMR chemical shifts in methanol-*d*<sub>4</sub> are referenced to 49.0 ppm. The following format is used to report resonances: chemical shift in ppm [multiplicity, coupling constant(s) in Hz, integral value].

High-resolution mass spectra were recorded on a Bruker BioTOF II (ESI-TOF) instrument using PPG (MW<sub>ave</sub> 725) as an internal calibrant. A solution of the analyte in methanol and then of the PPG-725 were plug-loaded into a 100  $\mu$ L syringe and injected into the ESI-TOF ionization chamber. Five swaths of data (ca. 500 scans each) were analyzed, and the median value was recorded.

### Synthesis Procedures and Spectroscopic Characterization Data for New Compounds.

### PTX012

Scheme 1. Synthesis of PTX012.



**a**. AlCl<sub>3</sub>, PhOH, toluene, rt; **b**. BrCH<sub>2</sub>CO<sub>2</sub>CH<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>, acetone, 56 °C **c**. (CH<sub>3</sub>)<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>, toluene, MeOH, 90 °C.

The synthesis of known **3** was accomplished via a known 2-step sequence (dealkylation<sup>1</sup> to **2** followed by O-alkylation<sup>2</sup> to **3**) starting from the commercial available 4-*tert*-butylcalixarene (**1**).

PTX012: To a stirred solution of hexamethyl ester 3 (20 mg, 0.019 mmol, 1 equiv) dissolved in (200 along with several drops of methanol, was added toluene μL) N.Ndimethylethylenediamine (123 µL, 1.12 mmol, 60 equiv) under a nitrogen atmosphere. The resultant solution was heated at 90 °C for 24 h after which an additional 60 equiv of N.Ndimethylethylenediamine was added and the solution heated for 20.5 h. The solution was cooled and the solvents removed under reduced pressure. Diethyl ether was added to the remaining solid and the resultant gummy residue was triturated with ethanol/ethyl acetate. The supernatant was concentrated to provide PTX012 (20 mg).

<sup>1</sup>**H NMR** (500 MHz, methanol- $d_4$ )  $\delta$  6.82 (d, J = 7.5 Hz, 12H), 6.63 (t, J = 7.6 Hz, 6H), 4.23 (br s, 12H), 4.04 (br s, 12H), 3.29 (mostly obscured by CD<sub>2</sub>HOD peak, chemical shift deduced from COSY spectrum correlation to the 2.38 resonance), 2.38 (t, J = 6.9 Hz, 12H), and 2.23 (s, 36H).

<sup>13</sup>**C NMR** (125 MHz, methanol- $d_4$ )  $\delta$  170.8, 155.6, 134.9, 130.6, 126.1, 72.8, 59.1, 45.6, 37.6, and 30.7.

**HRMS** (ESI-TOF) m/z calcd for C<sub>78</sub>H<sub>108</sub>N<sub>12</sub>Na<sub>2</sub>O<sub>12</sub> (M + 2Na)<sup>2+</sup>, 725.3997; found, 725.3994.

#### PTX013





a. CICH<sub>2</sub>CH<sub>2</sub>N(CH<sub>3</sub>)<sub>2</sub>•HCI, NaOH, toluene, 110 °C b. HCI/EtOH, rt.

Calixarene **5**: To a culture tube equipped with a stir bar was added compound **4** (150 mg, 0.354 mmol, 1 equiv) dissolved in toluene (3 mL). The solution was warmed and powdered NaOH (340 mg, 8.5 mmol, 24 equiv) was added. This suspension was refluxed for 10 min after which 2-(*N*,*N*-dimethylamino)ethyl chloride•HCl (410 mg, 2.85 mmol, 8 equiv) was added and the mixture was heated for 2.25 h. The mixture was cooled to rt, water was added, and the layers were separated. The organic layer was washed with 10% HCl<sub>(aq)</sub> (x 3) and the aqueous layers were combined and basified with NaOH<sub>(aq)</sub>. The aqueous layer was extracted with CHCl<sub>3</sub> and the combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated to provide a pale yellow solid. Trituration with hexane gave **5** as an off-white solid (22 mg).

<sup>1</sup>**H NMR** (500 MHz,  $CDCl_3$ )  $\delta$  6.61 (m, 12H), 4.43 (d, *J* = 13.5, 4H), 4.04 (t, *J* = 7.5 Hz, 8H), 3.17 (d, *J* = 13.5 Hz, 4H), 2.85 (br s, 8H), and 2.31 (s, 24H).

**PTX013**: Acetyl chloride (71  $\mu$ L) was added to ethanol (10 mL) at rt to produce a 0.1 M ethanolic HCl stock solution. In another flask calixarene **5** (10 mg, 0.014 mmol, 1 equiv) was dissolved in CHCl<sub>3</sub> (1 mL), and a portion of the stock ethanolic HCl solution (564  $\mu$ L, 0.056 mmol, 4 equiv) was added. After several minutes the solvent was removed *in vacuo* to provide **PXT013** as a white solid.

<sup>1</sup>**H NMR** (500 MHz, methanol- $d_4$ )  $\delta$  6.67 (br s, 12H), 4.35 (t, J = 7.6, 8H), 4.33 (d, J = 13.6 Hz, 4H), 3.64 (t, J = 7.2 Hz, 8H), 3.38 (d, J = 13.8 Hz, 4H), and 2.96 (s, 24H).

<sup>13</sup>**C NMR** (125 MHz, methanol- $d_4$ )  $\delta$  156.4, 135.8, 130.1, 124.6, 69.8, 57.2, 44.5, and 32.1.

**HRMS** (ESI-TOF): calcd for  $C_{44}H_{61}N_4O_4$  (M + H)<sup>+</sup>, 709.4687; found 709.4701.

#### PTX014

#### Scheme 3. Synthesis of PTX014.



**a**. BrCH<sub>2</sub>CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>, acetone, 56 <sup>o</sup>C **b**. (CH<sub>3</sub>)<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>, toluene, CH<sub>3</sub>OH, 90 <sup>o</sup>C **c**. HCl/ CH<sub>3</sub>OH, rt.

The synthesis of **7** was accomplished by O-alkylation<sup>2</sup> of known **6** as shown above.

Calixarene 8: Tetraethyl ester 7 (26.5 mg, 0.028 mmol, 1 equiv) was dissolved in *N*,*N*-dimethylethylenediamine (1 mL) under a nitrogen atmosphere. The resultant solution was stirred at rt for 20 h. Water was added and the mixture was extracted with ethyl acetate. The organic layers were dried with MgSO<sub>4</sub>, filtered, and concentrated to give a white solid. Crystallization from ether/ethanol provided calixarene 8 (17.5 mg).

<sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) δ 8.09 (t, *J* = 5.5 Hz, 4H), 7.32 (s, 8H), 4.86 (s, 8H), 3.47 (dt, *J* = 6.0, 6.0 Hz, 8H), 2.49 (t, *J* = 6.5 Hz, 8H), 2.36 (s, 24H), and 1.1 (s, 36H).

**PTX014**: Acetyl chloride (71  $\mu$ L) was added to methanol (10 mL) at rt to produce a 0.1 M methanolic HCl stock solution. In another flask calixarene **8** (11 mg, 0.009, 1 equiv) was dissolved in CHCl<sub>3</sub> (1 mL). A portion of the stock methanolic HCl solution (410  $\mu$ L, 0.041 mmol, 4.4 equiv) was added. After several minutes the solvent was removed *in vacuo* to provide **PXT014** as a white solid.

<sup>1</sup>**H NMR** (500 MHz, methanol- $d_4$ )  $\delta$  7.47 (s, 8H), 5.04 (s, 8H), 3.78 (t, J = 5.9 Hz, 8H), 3.44 (t, J = 5.6 Hz, 8H), 3.0 (s, 24H), and 1.14 (s, 36H).

<sup>13</sup>**C** NMR (125 MHz, methanol- $d_4$ )  $\delta$  172.2, 159.3, 149.2, 136.3, 129.7, 75.9, 58.3, 44.0, 35.8, 35.3, and 31.6.

**HRMS** (ESI-TOF) m/z calcd for  $C_{64}H_{98}N_8O_8S_4$  (M + 2H)<sup>2+</sup>, 617.3190; found, 617.3198.

#### PTX015

#### Scheme 4. Synthesis of PTX015.



a. CICH<sub>2</sub>CH<sub>2</sub>N(CH<sub>3</sub>)<sub>2</sub>•HCl, NaOH, toluene, 110 °C; b. HCl/MeOH, rt.

Calixarene **10**: To a culture tube equipped with a stir bar was added compound **9** (50 mg, 0.077 mmol, 1 equiv) dissolved in toluene (1 mL). The solution was warmed and powdered NaOH (75 mg, 1.88 mmol, 24 equiv) was added. This suspension was refluxed for 10 min after which 2-(*N*,*N*-dimethylamino)ethyl chloride•HCl (89 mg, 0.618 mmol, 8 equiv) was added, and the mixture was heated for 2.25 h. The mixture was cooled to rt, water was added, and the layers were separated. The organic layer was washed with 10% HCl<sub>(aq)</sub> (x 3), and the aqueous layers were combined and basified with NaOH<sub>(aq)</sub>. The aqueous layer was extracted with CHCl<sub>3</sub> and the combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated to provide a pale yellow solid. Trituration with hexane gave **10** as an off-white solid (14 mg). The <sup>1</sup>H NMR spectral data in CDCl<sub>3</sub> were in accord with reported literature values.<sup>3</sup>

**PTX015**: Acetyl chloride (71  $\mu$ L) was added to methanol (10 mL) at rt to produce a 0.1 M methanolic HCl stock solution. In another flask was placed **10** (8.5 mg, 0.009 mmol, 1 equiv) dissolved in CHCl<sub>3</sub> (0.5 mL), and a portion of the stock methanolic HCl solution (365  $\mu$ L, 0.036 mmol, 4 equiv). After several minutes the solvent was removed *in vacuo* to provide **PXT015** as a white solid.

<sup>1</sup>**H NMR** (500 MHz, methanol- $d_4$ )  $\delta$  6.92 (s, 8H), 4.38 (m, 8H), 4.29 (d, J = 12.9 Hz, 4H), 3.69 (m, 8H), 3.31 (obscured by CD<sub>2</sub>HOD peak, chemical shift from COSY correlated with the resonance at 4.29 ppm), 2.99 (br s, 24H), and 1.1 (s, 36H).

<sup>13</sup>C NMR (125 MHz, methanol-*d*<sub>4</sub>) δ 152.1, 146.1, 133.2, 125.6, 68.2, 55.3, 42.9, 33.5, 30.5, add 29.3.

**HRMS** (ESI-TOF) m/z calcd for C<sub>60</sub>H<sub>93</sub>N<sub>4</sub>O<sub>4</sub> (M + H)<sup>+</sup>, 933.7191; found, 933.7207.

#### References

<sup>1</sup> V. Böhmer, D. Rathay, H. Kämmerer, The *t*-butyl group as a possible protective group in the synthesis of oligo [hydroxy-1,3-phenylene]methylenes, Org. Prep. Proc. Int. 3 (1978) 113–121.

<sup>2</sup> F. Arnaud-Neu, E. M. Collins, M. Deasy, G. Ferguson, S. J. Harris, B. Kaitner, A. J. Lough, M. A. McKervey, E. Marques, B. L. Ruhl, M. J. Schwing-Weill, E. M. Seward, Synthesis, X-ray crystal structures, and cation-binding properties of alkyl calixaryl esters and ketones, a new family of macrocyclic molecular receptors, J. Am. Chem. Soc. 111 (1989) 8681–8691.

<sup>3</sup> A. F. Danil de Namor, F. J. Sueros Velarde, M. C. Cabaleiro, New lower rim calix [4]arene amine derivatives: Synthesis, characterisation and acid-base properties, J. Chem. Soc. Faraday Trans. 92 (1996) 1731–1737.



| Dings, Levin      | ne et <u>al</u> .                                                                                               | <u> </u>                                                     |                                         | ~ ~                          |                       | Suppleme                   | ntal Material                                           |                            |                                          |                                          |                     |                     |                                                                                                                   | pag                        | ge S9 of S17                 |
|-------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------|------------------------------|-----------------------|----------------------------|---------------------------------------------------------|----------------------------|------------------------------------------|------------------------------------------|---------------------|---------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------|
|                   | .758                                                                                                            | .600                                                         | 859                                     | 083                          |                       |                            |                                                         |                            | 52                                       | 25                                       | 207                 | 23                  | 372                                                                                                               |                            |                              |
|                   | 170.                                                                                                            | 155.                                                         | 134.                                    | 130.                         |                       |                            |                                                         |                            | 72.7                                     | 59.1                                     | 45.6                | 37.6                | 30.6                                                                                                              |                            |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     |                                                                                                                   |                            |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     |                                                                                                                   |                            |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     |                                                                                                                   |                            |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     |                                                                                                                   |                            |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     |                                                                                                                   |                            |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     |                                                                                                                   | ]                          |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     |                                                                                                                   |                            |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     | 1                                                                                                                 |                            |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     | Ĩ                                                                                                                 | 0                          | CH₃                          |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     | 0                                                                                                                 |                            | <sup>N</sup> CH <sub>3</sub> |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     | ΡΤΧΟ                                                                                                              | 12                         |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     | 13                  | C NMR me                                                                                                          | ethanol-d                  | 4                            |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     |                                                                                                                   |                            |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     |                                                                                                                   |                            |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     |                                                                                                                   |                            |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     |                                                                                                                   |                            |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     |                                                                                                                   |                            |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     |                                                                                                                   |                            |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     |                                                                                                                   |                            |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     |                                                                                                                   |                            |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     |                                                                                                                   |                            |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          | I                                        |                     |                     | I                                                                                                                 |                            |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     |                                                                                                                   |                            |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     |                                                                                                                   |                            |                              |
|                   |                                                                                                                 |                                                              |                                         |                              |                       |                            |                                                         |                            |                                          |                                          |                     |                     |                                                                                                                   |                            |                              |
| <br>              | ) ( <b>hinaka sil</b> a s <b>. b</b> ha bha a                                                                   | ار.<br>انداد فا الدامدة فازيل بن من أوراد اغتران             | n hillind dataa, ayaa aha a misila ahaa | امد (بایش استار) بولور بالیش | ika takû kaki kilû de | ان أي المارية الم          | l da did <mark>e at da k la bin t</mark> a ana sa bata. | na dhaladhadhladh.         | մ.                                       | مەر يابىلارلارىلارلارلاردى ،             | .   .] <b>M</b> int |                     | المارية، من التي بيان                                                                                             | مىلىلا مىرلىلار با         | li da mituria finalene       |
|                   | n a geographic concentration<br>and a ball of the defense                                                       | and a state of the state of the                              | in salita di kana di shekara na sa      | n, na shi talaha ka ka ka    |                       | la bin ditti di bi altanda |                                                         |                            | a taka a basar in<br>Managina da sa jina |                                          |                     | atter e realization | אין איזע איז איזער איזער איזער.<br>ערט איזער איז איזער איזע |                            |                              |
| անուտ ու ու ու որ | in the second | , անդանան անդանգորին, որ | tra anti di cultur                      | <b></b>                      | 1                     | ։ ին հանդան է              | ի դես ու ու դես     | <b>ىرى</b> بى 1 بايلى يەلە | ուն եռերև ներ                            | ասերել կերթություն։<br>Դուիս կերթություն | i i Alinin          | , անհետ, եր, հայո   | an and an and an                                                              | ու այստերին։<br>Դերեւներին | ե անդարու ուղեկին պատ        |
| 180               | 170                                                                                                             | 160 150                                                      | 140                                     | 130                          | 120 110               | 100                        | 90                                                      | 80                         | 70                                       | 60                                       | 50                  | 40                  | 30                                                                                                                | 20                         | 10                           |





| Dings, Levine et al.                                                                                                                                                                                                                |                  | 135.762                                        |                                                                                                                                                                                                                                       | Supplemental Material                                |           | <b>18.007</b><br>——————————————————————————————————— | page S12 of S17                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------|------------------------------------------------------|-----------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                     |                  |                                                |                                                                                                                                                                                                                                       |                                                      |           |                                                      | ĊH <sub>3</sub><br><b>PTX013</b><br><sup>13</sup> C NMR methanol- <i>d</i> <sub>4</sub> |
| ोक्सकः सी दब वी दब से दब्दी है। जन्मना कर के साथ प्रति को स्वार्थना कर्मना स्वार्थना कर्मना स्वार्थना कर्मना स<br>स्वार प्रत्य काराव्य कृष्ण विवयन्त्र कृष्ण कृष्ण कर्मना कर्मना का कृष्ण कृषि स्वारण्य कर्मना क्षा कृषि स्वारण्य क | 1<br>1.2.6.1.1.6 | L<br>La la | K del<br>19 de - Jacobie State, politik de la state de<br>19 de - Jacobie State de la | לקום לי היינה או | <br> <br> |                                                      |                                                                                         |
| 180 170 1                                                                                                                                                                                                                           | 60 150 14        | 40 130                                         | 120 110                                                                                                                                                                                                                               | 100 90 80                                            | 70 60     | 50 40                                                | 30 20 10 0                                                                              |





| Dings, Levine et al. |         | 159.290 |     | 129.718 | Supplemental Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75.856                                                           | 58.342 | 44.043<br>35.804<br>35.271<br>31.579 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | page S15 of S17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------|---------|---------|-----|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |         |         |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  |        |                                      | H <sub>3</sub> C<br>H <sub>3</sub> C<br>C<br>C<br>C<br>C<br>O<br>O<br>P<br><sup>13</sup> C NI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $H_{3}$ $CH_{3}$ $H_{4}$ $H_{1}$ $H_{1}$ $H_{1}$ $H_{1}$ $H_{2}$ $H_{2}$ $H_{1}$ $H_{2}$ $H_{2}$ $H_{2}$ $H_{2}$ $H_{1}$ $H_{2}$ $H_{$ |
|                      | 1.<br>1 |         |     | <br>    | 1611 - 1612 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 - 162 | Lung Hala da a se a la grada da se a se a se a se a se a se a se | L<br>  |                                      | ν <sup>1</sup> αμαία το μ <sup>1</sup> αμαία το ματογραφοριατό το ματογραφοριστο το ματογραφοριατό το μα<br>Ο το ματογραφοριστο το ματογραφοριατό το ματογραφορισ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ppm 200              | 180     | 160     | 140 | 120     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80                                                               | 60     | 40                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



