Supplementary figures and tables, belonging to

"Prolonged niacin treatment leads to increased adipose tissue poly-unsaturated fatty acid synthesis and an anti-inflammatory lipid and oxylipin plasma profile"

Mattijs M. Heemskerk^{1,2*}, Harish K. Dharuri^{1,2,a*}, Sjoerd A.A. van den Berg^{1,2,b}, Hulda S. Jónasdóttir³, Dick-Paul Kloos³, Martin Giera³, Ko Willems van Dijk^{1,2,4}, Vanessa van Harmelen^{1,2}

¹ Department of Human Genetics, LUMC, Leiden, The Netherlands
² Einthoven laboratory for experimental vascular medicine, LUMC, Leiden, The Netherlands
³ Center for Proteomics and Metabolomics, LUMC, Leiden, The Netherlands
⁴ Department of Internal Medicine, LUMC, Leiden, The Netherlands

* Both authors contributed equally

^a Current address: Illumina, Inc., Hayward, CA, USA

^b Current address: Department of Clinical Chemistry and Hematology, Amphia hospital, Breda, The Netherlands.

Table S I: qPCR primer sequences for the household genes *PrlpO* & *Cyclo* and for the target genes *ElovI5*, *ElovI6* &*Fads2*.

RNA was isolated from gWAT using the Nucleospin RNA/Protein kit (MACHEREY-NAGEL GmbH & Co. KG, Düren, Germany). Subsequently, 1µg of RNA was used for cDNA synthesis by iScript (BioRad, Hercules, CA, USA), which was purified by the Nucleospin Gel and PCR clean-up kit (Machery Nagel). Real-Time PCR was carried out on the IQ5 PCR machine (BioRad) using the Sensimix SYBR Green RT-PCR mix (Quantace, London, UK) and QuantiTect SYBR Green RT-PCR mix (Qiagen, Venlo, the Netherlands). Target mRNA levels were normalized to *RplpO* & *Ppia* mRNA levels.

Gen	FW primer	RV primer	Temperature
Rplp0	GGACCCGAGAAGACCTCCTT	GCACATCACTCAGAATTTCAATGG	60
Ppia	ACTGAATGGCTGGATGGCAA	TGTCCACAGTCGGAAATGGT	61
Elovl5	CAGCTTGCTTCTGTTCCCG	TCCATTTTAAAACCTCTCTGCCT	61
Elovl6	GCACTAAGACCGCAAGGCAT	CTACGTGTTCTCTGCGCCTC	61
Fads2	CTGGTGGAACCACCGACATT	TCTTGCCATACTCAAGGGGC	61

Figure S I: Adipose tissue fatty acid composition of gWAT from APOE*3-Leiden.CETP mice fed a western type diet with 0.1% cholesterol with and without niacin. Mean±SD, N=14 for Control/N=13 for Niacin, *p<0.05 compared to control gWAT after false discovery rate correction.

	Contro	gWAT	Niacin gWAT		Diet			Control vs Niacin	
SFA	Average	SD	Average	SD	Average SD			P-value	
C10:0	0,0008	0,0003	0,0012	0,0004	0,0013	0,0009		(*)0,0078	
C12:0	0,0022	0,0005	0,0036	0,0011	0,0019	0,0013		(*)0,0005	
C14:0	0,0173	0,0054	0,0271	0,0061	0,0059	0,0038		(*)0,0003	
C16:0	0,2153	0,0285	0,2339	0,0360	0,4351	0,0571		0,1679	
C17:0	0,0005	0,0002	0,0004	0,0001	0,0014	0,0006		0,2804	
C18:0	0,0239	0,0081	0,0250	0,0069	0,2162	0,0331		0,7049	
C20:0	0,0005	0,0003	0,0004	0,0002	0,0030	0,0009		0,4066	
C22:0	2,88E-05	1,99E-05	2,51E-05	1,55E-05	3,00E-04	7,01E-05		0,6070	
MUFA									
C14:1	0,0012	0,0004	0,0018	0,0004	0,0003	0,0002		(*)0,0006	
C16:1	0,0652	0,0131	0,0745	0,0202	0,0055	0,0035		0,1773	
C17:1	0,0007	0,0002	0,0007	0,0002	0,0002	0,0001		0,1951	
C18:1	0,6400	0,0459	0,6007	0,0532	0,3036	0,0445		0,0593	
C20:1	0,0022	0,0018	0,0019	0,0010	0,0004	0,0002		0,5577	
C22:1	2,94E-05	2,05E-05	2,65E-05	1,47E-05	1,62E-05	1,13E-05		0,6729	
PUFA n-3									
ALA C18:3	3,32E-04	3,89E-05	2,72E-04	3,37E-05	4,58E-04	9,25E-05		(*)0,0003	
ETA C20:3	2,63E-05	2,06E-05	2,51E-05	1,31E-05	2,82E-06	1,61E-06		0,8598	
EPA C20:5	6,01E-07	5,83E-07	4,93E-07	4,93E-07	9,89E-07	9,91E-07		0,7985	
DPA C22:5	6,95E-07	5,62E-07	7,28E-07	5,00E-07	4,11E-07	3,58E-07		0,8961	
DHA C22:6	5,02E-07	4,58E-07	6,00E-07	4,28E-07	2,06E-06	4,75E-07		0,5940	
PUFA n-6									
LA C18:2	2,19E-02	4,13E-03	1,78E-02	2,82E-03	2,32E-02	9,00E-03		(*)0,0080	
C20:2	4,91E-05	4,09E-05	4,43E-05	2,49E-05	1,15E-05	4,28E-06		0,7206	
C22:2	1,62E-06	1,47E-06	1,67E-06	1,45E-06	7,95E-06	1,70E-06		0,9370	
C18:3	8,86E-06	2,45E-06	7,84E-06	1,59E-06	7,16E-07	4,56E-07		0,2231	
C20:3	1,31E-06	8,78E-07	1,02E-06	3,31E-07	3,55E-07	1,66E-07		0,2789	
AA C20:4	2,60E-05	1,47E-05	2,25E-05	1,18E-05	1,47E-06	9,51E-07		0,5065	
AdA C22:4	1,90E-06	1,07E-06	1,42E-06	9,62E-07	2,86E-07	-		0,2540	

Table S II: Adipose tissue fatty acid composition of gWAT from APOE*3-Leiden.CETP mice fed a western type diet with 0.1% cholesterol with and without niacin and fatty acid composition of the western type diet. Fraction of total area corrected sum. Mean±SD, N=14 for Control/N=13 for Niacin/N=3 for diet.

(*)Significant finding after false discovery rate correction.

Figure S II: Liver fatty acid composition from APOE*3-Leiden.CETP mice fed a western type diet with 0.1% cholesterol with and without niacin. Fraction of total area corrected sum. Mean±SD, N=14 for Control/N=13 for Niacin.

*p<0.05 comparing control gWAT to niacin gWAT after false discovery rate correction.

	Contro	l Liver	Niacir	n Liver	Control vs Niacin
SFA	Average	SD	Average	SD	P-value
C10:0	8,23E-05	4,42E-05	9,74E-05	7,38E-05	0,5248
C12:0	0,000143	5,17E-05	0,000152	5,92E-05	0,6948
C14:0	0,003877	0,000907	0,003968	0,001167	0,8245
C16:0	0,20753	0,013181	0,196168	0,020302	0,0989
C17:0	0,000625	9,85E-05	0,000565	5,39E-05	0,0739
C18:0	0,057714	0,014338	0,059939	0,013182	0,6860
C20:0	0,000262	0,000122	0,000229	6,67E-05	0,4218
C22:0	0,000147	0,000125	0,000107	3,45E-05	0,2909
MUFA					
C14:1	9,46E-05	3,57E-05	9,7E-05	2,96E-05	0,8528
C16:1	0,019737	0,00563	0,020314	0,004366	0,7759
C17:1	0,00056	0,000161	0,000524	0,000112	0,5268
C18:1	0,621529	0,018559	0,628717	0,023243	0,3893
C20:1	0,010283	0,002869	0,009425	0,001852	0,3834
C22:1	0,000124	8,64E-05	9,79E-05	2,31E-05	0,3213
PUFA n-3					
ALA C18:3	9,17E-05	4,6E-05	0,00011	3,92E-05	0,2796
ETA C20:3	0,000388	0,000133	0,000438	0,000173	0,4111
EPA C20:5	0,00721	0,00204	0,00886	0,002503	0,0763
DPA C22:5	-	-	-	-	
DHA					
C22:6	0,000669	0,000237	0,000828	0,000228	0,0945
PUFA n-6					
LA C18:2	0,019119	0,003479	0,020887	0,003278	0,1973
C20:2	0,000276	9,29E-05	0,000271	0,000102	0,9115
C22:2	1,49E-05	2,02E-05	9,08E-06	4,02E-06	0,3334
C18:3	2,17E-05	1,29E-05	2,69E-05	1,31E-05	0,3204
C20:3	1,39E-05	7,87E-06	1,19E-05	4,41E-06	0,4437
AA C20:4	0,008023	0,002318	0,009784	0,002791	0,0916
AdA C22:4	1,47E-05	3,65E-06	1,69E-05	6,41E-06	0,3014

Table S III: Liver fatty acid composition from APOE*3-Leiden.CETP mice fed a western type diet with 0.1% cholesterol with and without niacin. Fraction of total area corrected sum. Mean±SD, N=14 for Control/N=13 for Niacin.

(*)Significant finding after false discovery rate correction.

	Control		Niacin	Control vs Niacin		
PUFA	Average (ng/mL)	SD	Average (ng/mL)	SD	P-value	
ALA	1139,98	69,76	784,61	61,24	(*)0,0007	
EPA	91,51	7,10	82,03	6,51	0,3342	
DPA	1373,47	118,48	1133,20	81,11	0,0996	
DHA	1012,96	52,65	1194,23	52,00	0,0226	
LA	9033,60	427,04	8875,20	273,66	0,7614	
АА	5833,59	417,18	5342,29	192,80	0,2949	
AdA	139,25	11,33	119,86	7,21	0,1608	
Oxylipins						
12-HETE	140,60	100,95	138,77	121,74	0,9666	
Leukotriene E ₄	0,125	0,020	0,112	0,005	0,0324	
Prostaglandin D ₂	0,545	0,073	0,528	0,097	0,6066	
Thromboxane B ₂	3,25	0,95	4,67	2,00	0,0252	
14,15-diHETE	0,247	0,075	0,291	0,127	0,2891	
19,20-diHDPA	0,696	0,131	1,011	0,345	(*)0,0065	

Table S IV: Unfasted plasma PUFA and oxylipin concentrations of APOE*3-Leiden.CETP mice fed a western type diet with 0.1% cholesterol with and without niacin. Mean±SD, N=14 for Control/N=13 for Niacin.

(*)Significant finding after false discovery rate correction.

Figure S III: Correlation between the plasma concentrations of 19,20dihydroxydocosapentaenoic acid and docosahexaenoic acid. N=14 mice per group, *p<0.05 compared to a slope of zero.

Symbol	Lipid Maps ID	RT (min)	Q1 (m/z)	Q3 (m/z)	DP (Volts)	EP (Volts)	CE (Volts)	CCEP (Volts)
RvE1	LMFA03070019	4.0	349.1	195.0	-95	-10	-22	-13
20-hydroxy LTB₄	LMFA03020018	4.4	351.1	195.0	-60	-10	-24	-17
8-iso-PGF ₂ α	LMFA03110001	5.1	353.1	193.0	-135	-10	-34	-11
15-keto-PGE ₂	LMFA03010030	5.1	349.0	234.9	-65	-10	-20	-13
TxB ₂	LMFA03030002	5.2	369.1	169.0	-55	-10	-24	-15
8-iso-PGE ₂	LMFA03110003	5.3	351.1	271.0	-5	-10	-24	-19
13.14-dihvdro-15-keto-PGE	LMFA03010031	5.6	351.1	235.0	-45	-10	-30	-13
PGE ₁ -d	LMFA03010008	5.6	355.1	193.0	-50	-10	-26	-17
PGE ₂	LMFA03010003	5.7	351.2	271.1	-50	-10	-22	-21
PGD	LMFA03010004	5.8	351.1	233.0	-30	-10	-16	-13
LXB	LMFA03040002	6.0	351.1	220.9	-60	-10	-22	-13
PGF _{2~}	LMFA03010002	6.1	353.1	193.0	-80	-10	-34	-11
RvD2	LMFA04000007	6.2	375.1	277.1	-60	-10	-18	-15
LXA,	LMFA03040001	6.5	351.1	114.8	-40	-10	-20	-11
13.14-dihvdro-15-keto-PGF ₃ α	LMFA03010027	6.6	353.1	195.0	-110	-10	-32	-11
AT-RvD1	LMFA04000074	6.7	375.0	215.0	-50	-10	-26	-11
RvD1	LMFA04000006	6.7	375.1	215.0	-50	-10	-26	-11
epi-LXA,	LMFA03040003	6.8	351.1	114.9	-20	-10	-22	-11
RvE1	LMFA03070019	7.8	333.1	114.9	-35	-10	-18	-15
18S-RvE3	LMFA03070048	8.8	333.1	245.2	-25	-10	-16	-17
6-trans-LTB₄	LMFA03020013	8.9	335.1	194.9	-105	-10	-22	-11
8S.15S-diHETE	LMFA03060050	8.9	335.1	207.9	-55	-10	-22	-17
LTD	LMFA03020006	9.0	495.1	177.0	-70	-10	-28	-19
6-trans-12-epi-LTB₄	LMFA03020014	9.1	335.1	194.9	-80	-10	-22	-25
10S,17S-diHDHA (PDX)	LMFA04000047	9.2	359.1	153.0	-70	-10	-22	-9
18R-RvE ₃	LMFA03070049	9.2	333.1	245.0	-55	-10	-18	-23
7S-MaR1	n.a.	9.3	359.1	249.9	-20	-10	-20	-19
MaR1	LMFA04000048	9.4	359.2	250.2	-65	-10	-20	-13
LTB ₄ -d ₄	LMFA03020030	9.4	339.1	196.9	-70	-10	-22	-19
LTB₄	LMFA03020001	9.4	335.1	195.0	-65	-10	-22	-21
14,15-diHETE	LMFA03060077	9.5	335.1	207.0	-65	-10	-24	-21
7,17-diHDPA	n.a.	9.5	361.1	198.9	-45	-10	-26	-23
LTE₄	LMFA03020002	9.6	438.1	333.1	-55	-10	-26	-15
19,20-diHDPA	LMFA04000043	10.2	361.1	273.0	-55	-10	-22	-15
9-HOTrE	LMFA02000024	10.2	293.0	170.9	-75	-10	-20	-15
13-HOTrE	LMFA02000051	10.3	293.0	195.0	-45	-10	-24	-19
18-HEPE	LMFA03070038	10.4	317.1	259.0	-5	-10	-16	-7
15-HEPE	LMFA03070009	10.5	317.1	219.0	-65	-10	-18	-19
13-HODE	LMFA02000228	10.8	295.0	194.9	-110	-10	-24	-21
9-HODE	LMFA02000188	10.8	295.0	171.0	-130	-10	-22	-7
15-HETE-d ₈	LMFA03060080	10.9	327.2	226.0	-85	-10	-18	-11
15-HETE	LMFA03060001	11.0	319.1	219.1	-55	-10	-18	-9
11-HETE	LMFA03060003	11.1	319.1	167.0	-70	-10	-22	-15
17-HDHA	LMFA04000072	11.1	343.1	245.0	-65	-10	-16	-15
12-HETE	LMFA03060007	11.2	319.1	179.0	-65	-10	-20	-23
8-HETE	LMFA03060006	11.2	319.1	154.9	-70	-10	-20	-19
5-HETE	LMFA03060002	11.3	319.1	115.0	-65	-10	-18	-11
ALA	LMFA01030152	12.4	277.0	233.0	-90	-10	-22	-29
EPA	LMFA01030759	12.4	301.0	202.9	-125	-10	-18	-21
DHA-d ₅	LMFA01030762	12.4	332.0	288.1	-75	-10	-16	-13
DHA	LMFA01030185	12.7	327.1	229.2	-115	-10	-18	-11
AA	LMFA01030001	12.7	303.0	205.1	-155	-10	-20	-11
LA	LMFA01030120	12.8	279.0	261.0	-115	-10	-28	-13
DPA n-3	LMFA04000044	13.0	329.1	231.1	-50	-10	-20	-17
AdA	LMFA01030178	13.1	331.1	233.0	-130	-10	-22	-11

Table S V: Multiple Reaction Monitoring setup for ion transitions of the target compounds. Symbols in black refer to internal standards.

RT retention time,

Q1 quadrupole 1 ion selection,

Q3 quadrupole 3 ion selection,

EP entrance potential,

CE, collision energy,

CCEP collision cell exit potential

HODES, HOTrES, HETES, HEPES, diHETEs and diHDPAs are given without chiral descriptors.

Figure S Va: MS/MS spectra of 0.1 ng/mL standard sample at Relative RT 0.925 (Thromboxane B_2)

Figure S Vb: MS/MS spectra of representative sample at Relative RT 0.927 (Thromboxane B_2)

M⁻

Figure S VIa: MS/MS spectra of 0.1 ng/mL standard sample at Relative RT 1.087 (19,20-diHDPA)

Figure S VII: Release of medium chain saturated fatty acids from adipocytes isolated from APOE*3-Leiden.CETP mice fed a western type diet with 0.1% cholesterol with and without niacin. Fatty acid release in arbitrary units during a 2 hour *ex vivo* basal incubation. Mean±SD, N=14 for Control/N=13 for Niacin.

Figure S VIII: Release of DHA and AA from adipocytes isolated from APOE*3-Leiden.CETP mice fed a western type diet with 0.1% cholesterol without niacin. Fatty acid release in arbitrary units during a 2 hour *ex vivo* incubation in basal and 8Bromo-cAMP stimulated conditions. Mean±SD, N=14 for Control/N=13 for Niacin.

**** p<0,0001 for Basal vs 8Br-cAMP

Figure S IX: Ratio of DHA/AA released fatty acids from adipocytes isolated from APOE*3-Leiden.CETP mice fed a western type diet with 0.1% cholesterol without niacin. Fatty acid release in arbitrary units during a 2 hour *ex vivo* incubation under basal and acute niacin conditions. Mean±SD, N=14 for Control/N=10 for Acute niacin.