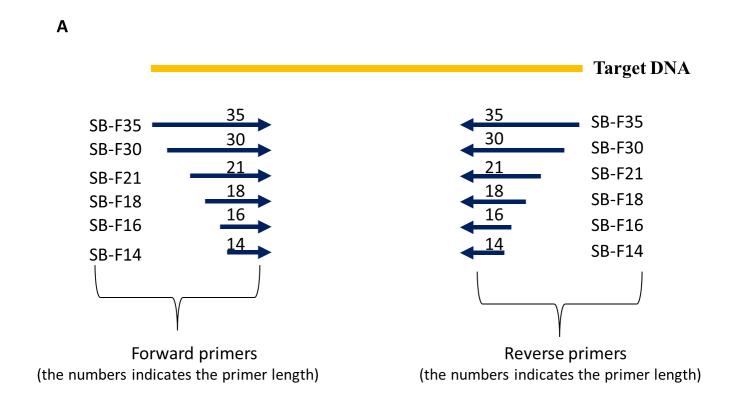
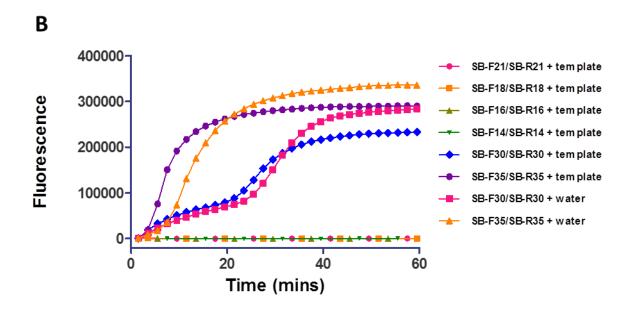
Supporting information S2


Primers used in SIBA (< 21 nucleotides in length) are unable to amplify target template


The primer lengths required for recombinase dependent amplification of a target DNA was investigated. Target specific primers pairs (i.e. forward and reverse primer) of different lengths (14-35 nucleotides) were incubated with a target DNA in the absence of the IO, under standard SIBA reaction conditions described in the "Materials and Methods" section. Figure S2A shows the target DNA and primer configurations/lengths used in this experiment. Primers (200 nM) were incubated both in the presence and absence of 10^7 copies of target DNA . The results can be seen in Figure S2B. Primers ≤ 21 nucleotides in length did not produce any detectable increase in SYBR Green I signal either in the presence or absence of the target DNA This suggests that primers ≤ 21 nucleotides (nt) in length are unable to amplify the target template. We reasoned that since they are below the minimum length required for recombinase dependent invasion of a duplex (Fig. S1), they are also unable to extend the target DNA via the action of a polymerase.

•

Primers \geq 30 nt in length yielded a detectable increase in the SYBR Green I signal, suggesting that amplification of the target template occurred. Primers \geq 30 nucleotides in length are able to invade the target duplex and as such the extension of the target DNA can take place via the action of a polymerase (Fig. S1). The orchestrated recombinase dependent primer invasion of the target duplex and subsequent polymerase-dependent extension can lead to an exponential amplification. This is consistent with previous studies demonstrating that primer recombinase-dependent amplification requires primers greater than 27 nt in length. This is the basis for a previously described isothermal amplification method, Recombinase Polymerase Amplification (RPA) [1]. However, as seen in Figure 2B and 2C, non-target-dependent amplification was also observed for primers \geq 30 nucleotides in length. The electrophoresis results suggested that only primers of 35 nucleotides yielded the correct amplification product (Fig. S2C). The non-target- amplification seen with primers \geq 30 nt could be due to primer dimers. The resulting aberrant template is able to exponentially amplify, since primers \geq 30 nt are able invade and extend the template via the action of a recombinase and a polymerase respectively. In contrast, aberrant template resulting from primers \leq 21 nt in length, are unable to exponentially amplify since they not recombinase substrates and are

therefore unable to invade a duplex. Primers used in SIBA \leq 21 nt in length and a likely to be more resistant to non-specific amplification since they are not substrate for a recombinase.

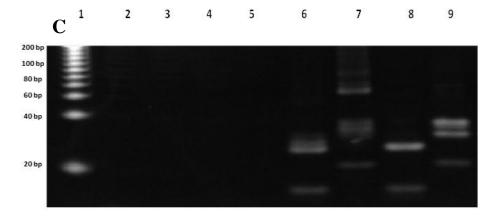


Figure S2. Primers < 21 nt in length are unable to amplify the target template. (A) Configuration of the template and primers used. (B) Real-time monitoring of SIBA reaction amplification using SYBR Green I. (C) Gel electrophoresis of the corresponding SIBA reaction products. Template (10⁷ copies) or nucleic acid-free water (NFW) were used in the absence of IO. Lane 1, BioRad EZ Load 20 bp Molecular Ruler (20–1000 bp); lane 2, SB-F21/SB-R21 + template; lane 3, SB-F18/SB-R18 + template; lane 4, SB-F16/SB-R16 + template; lane 5, SB-F14/SB-R14 + template; lane 6, SB-F30/SB-R30 + template; lane 7, SB-F35/SB-R35 + template; lane 8, SB-F30/SB-R30 + water; lane 9, SB-F35/SB-R35 + water. SB-TEMPLATE LONG (10⁷ copies) was used.

References

1. Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA Detection Using Recombination Proteins. PLoS Biol 4: e204.