Analytical and Bioanalytical Chemistry

Electronic Supplementary Material

Hydrogen-deuterium exchange in imidazole as a tool for studying histidine phosphorylation

Małgorzata Cebo, Martyna Kielmas, Justyna Adamczyk, Marek Cebrat, Zbigniew Szewczuk, Piotr Stefanowicz*

Table S1. The comparison of calculated and experimental masses for [MH]⁺ ions of model peptides and their monodeuterated analogues

Peptide name	Peptide sequence	Molecular formula	Native peptide Found mass [Da]	Native peptide Calculated mass [Da]	Deuterated peptide Calculated mass [Da]	Deuterated peptide Found mass[Da]
1RH0	H- Ala-Ala-Arg-His-Ala-Phe -OH	$C_{30}H_{45}N_{11}O_7$	672.3764	672.3582	673.3639	673.3893
2DH0	H- Ala-Ala-Asp-His-Ala-Phe -OH	$C_{28}H_{38}N_8O_9$	631.2815	631.2835	632.2897	632.3107
3RH1	H- Ala-Arg-Ala-His-Ala-Phe -OH	$C_{30}H_{45}N_{11}O_7$	672.3822	672.3582	673.3639	673.3882
4DH1	H- Ala-Asp-Ala-<mark>His</mark>-Ala-Phe -OH	C ₂₈ H ₃₈ N ₈ O ₉	631.2805	631.2835	632.2897	632.3134
5RH2	H-Arg-Ala-Ala-His-Ala-Phe-OH	$C_{30}H_{45}N_{11}O_7$	672.3822	672.3582	673.3639	673.3891
6DH2	H- Asp-Ala-Ala-<mark>His</mark>-Ala-Phe -OH	C ₂₈ H ₃₈ N ₈ O ₉	631.3058	631.2835	632.2897	632.3114
70H0	H- Ala-Ala-Ala-His-Ala-Phe -OH	$C_{27}H_{38}N_8O_7$	587.3133	587.2936	588.2999	588.3195

Table S2. The selected fragment ions for model peptides

Peptide	Dontido convenso	lon	Found mass	Calculated mass
name	Peptide sequence	fragments	[Da]	[Da]
1000	H- Ala-Ala-Arg<mark>-His</mark>-Ala-Phe -OH	b4	436.2427	436.2421
INHO		у3	374.1855	374.1829
2040	H- Ala-Ala-Asp-His-Ala-Phe -OH	b5	466.2195	466.2051
2010		y4	489.2253	489.2098
2011	H Ala Arg Ala His Ala Pho OH	a5	479.2995	479.2843
3881	H-Ald-Alg-Ald-HIS-Ald-Pile-OH	b4	436.3552	436.2421
1041	H- Ala-Asp-Ala-His-Ala-Phe -OH	b6	613.2953	613.2735
4DH1		y4	445.2333	445.2200
EDU2	H Arg Ala Ala His Ala Pha OH	a5	479.2996	479.2843
SKHZ	H-Alg-Ald-Ald-Ald-Ald-File-Off	b4	436.2552	436.2421
6043	H- Asp-Ala-Ala-His-Ala-Phe -OH	b4	395.1675	395.1680
ODHZ		уЗ	374.1846	374.1829
7040	H- Ala-Ala-Ala-His-Ala-Phe -OH	b5	422.2274	422.2152
7080		y4	445.2334	445.2200

Peptide name	Peptide sequence	Peptide with pHis Calculated mass	Deuterated peptide with pHis Calculated mass	Deuterated peptide with pHis Found mass
1RH0	H- Ala-Ala-Arg<mark>-His</mark>-Ala-Phe -OH	752.3239	753.3302	753.3595
2DH0	H- Ala-Ala-<mark>Asp-His</mark>-Ala-Phe -OH	711.2498	712.2561	712.2833
3RH1	H- Ala-Arg-Ala-<mark>His</mark>-Ala-Phe -OH	752.3239	753.3302	753.3604
4DH1	H- Ala-Asp-Ala-His-Ala-Phe -OH	711.2498	712.2561	712.2844
5RH2	H- Arg-Ala-Ala-<mark>His</mark>-Ala-Phe -OH	752.3239	753.3302	753.3606
6DH2	H- Asp-Ala-Ala-His-Ala-Phe -OH	711.2498	712.2561	712.2826
70H0	H- Ala-Ala-Ala-His-Ala-Phe -OH	667.2600	668.2662	668.2905

Table S3. The comparison of calculated and experimental masses for [MH]⁺ ions of monodeuterated analogues of phosphorylated peptides

Table S4. CID fragmentation pattern for peptide DRVYJHPF

Fragment	Molecular formula	Calculated m/z	Experimental m/z
y2 ⁺	C ₁₄ H ₁₉ N ₂ O ₃	263.1239	263.1451
$[b_6]^{2+}$	C ₃₆ H ₅₅ N ₁₁ O ₉	393.2131	393.2232
b 4 ⁺	C ₂₄ H ₃₆ H ₇ O ₇	534.2676	534.2853
a ₅ +	C ₂₉ H ₄₇ N ₈ O ₇	619.3568	619.3791
b₅ ⁺	C ₃₀ H ₄₇ N ₈ O ₈	647.3517	647.3753
[y ₆ -H₂O] ⁺	C ₄₀ H ₅₃ N ₈ O ₇	757.4037	757.4519
[b ₆ -NH₃] ⁺	C ₃₆ H ₅₀ DN ₁₀ O ₉	768.4005	768.4219
b ₆ ⁺	C ₃₆ H ₅₃ DN ₁₁ O ₉	785.4169	785.4489

Table S5. CID fragmentation pattern for peptide NHFWKTHT

Fragment	Molecular formula	Calculated m/z	Experimental m/z
[b₂-NH₃] ⁺	C ₁₀ H ₁₁ N ₄ O ₃	235.0863	235.0822
b ₂ ⁺	C ₁₀ H ₁₄ N ₅ O ₃	252.1097	252.1088
[y₃-NH₃] ⁺	C ₁₄ H ₁₉ DN ₅ O ₅	341.1715	341.1840
y ₃ ⁺	C ₁₄ H ₂₂ DN ₆ O ₅	358.1949	358.1884
b₃ ⁺	C ₁₉ H ₂₃ N ₆ O ₄	399.1781	399.1783
[b ₄ -NH ₃] ⁺	$C_{30}H_{30}N_7O_5$	568.2340	568.2369
b4 ⁺	C ₃₀ H ₃₃ N ₈ O ₅	585.2574	585.2603
[z ₅ -H ₂ O] ⁺	C ₃₁ H ₄₁ DN ₉ O ₆	637.3322	637.3296
[y₅-H₂O] ⁺	C ₃₁ H ₄₂ DN ₁₀ O ₆	654.3587	654.3570
y₅ ⁺	C ₃₁ H ₄₄ DN ₁₀ O ₇	672.3692	672.3675
b₅ ⁺	C ₃₆ H ₄₅ N ₁₀ O ₆	713.3524	713.3581
[z ₆ -H ₂ O] ⁺	C ₄₀ H ₅₀ DN ₁₀ O ₇	784.4006	784.4070
[y ₆ -H ₂ O] ⁺	C ₄₀ H ₅₁ DN ₁₁ O ₇	801.4271	801.4344
y ₆ +	C ₄₀ H ₅₃ DN ₁₁ O ₈	819.4376	819.4451

Fragment	Molecular formula	Calculated m/z	Experimental m/z
٧ ₃ +	C ₁₃ H ₂₅ N ₄ O ₃	285.1770	295.1994
b ₂ ⁺	C ₁₅ H ₁₆ DN ₄ O ₃	302.1364	302.1434
[b ₆] ²⁺	C ₃₆ H ₄₉ DN ₁₂ O ₉	398.1982	398.1910
b ₃ ⁺	C ₂₁ H ₂₇ DN ₅ O ₄	415.2204	415.2261
$[a_8]^{2+}$	C ₄₆ H ₆₇ DN ₁₄ O ₁₀	489.2692	489.2126
[b ₈] ²⁺	C ₄₇ H ₆₇ DN ₁₄ O ₁₁	503.2666	503.2787
[b₅-H₂O] ⁺	C ₃₀ H ₃₉ DN ₉ O ₈	639.3114	639.3002
b₅ ⁺	C ₃₀ H ₄₁ DN ₉ O ₈	657.3219	657.3404
[b ₆ -CO] ⁺	C ₃₅ H ₄₈ DN ₁₂ O ₈	766.3859	766.3432
¥7 ⁺	C ₃₄ H ₅₅ N ₁₂ O ₉	777.4215	777.4690
b ₆ +	C ₃₆ H ₄₈ DN ₁₂ O ₉	794.4140	794.4104
Z8 ⁺	C ₄₃ H ₆₂ DN ₁₂ O ₁₁	923.5039	923.5138
y ₈ +	C ₄₃ H ₆₄ DN ₁₃ O ₁₁	940.5148	940.5438

Table S6.	CID fragmentation	pattern for pe	eptide HYIQN	HPLG
-----------	-------------------	----------------	--------------	-------------

IMAGES

Fig. S1. The dependence of HDX rate constant on pH for peptide 1RH0

Fig. S2. The dependence of HDX rate constant on pH for peptide 2DH0

Fig. S3. The dependence of HDX rate constant on pH for peptide 3RH1

Fig. S4. The dependence of HDX rate constant on pH for peptide 4DH1

Fig. S5. The dependence of HDX rate constant on pH for peptide 5RH2

Fig. S6. The dependence of HDX rate constant on pH for peptide 70H0

Fig. S7. The dependence of HDX rate constant on pH for all seven unmodified peptide